Safety Warnings, Cautions, and Notes

WARNING! The controller may fail in a 0% or 100% power output state. To prevent death, personal injury, equipment damage or property damage, install external safety shutdown devices. If death or injury may occur, you must install approved safety shutdown devices that operate independently from the process control equipment.

WARNING! Risk of electric shock. Shut off power to your entire process before you begin installation of the controller.

WARNING! To reduce the risk of fire or electric shock, install the D8 in a controlled environment, relatively free of contaminants.

WARNING! To reduce the risk of electrical shock, fire, and equipment damage, follow all local and national electrical codes. Correct wire sizes, fuses and thermal breakers are essential for safe operation of this equipment.

WARNING! Use a power supply with a Class 2 rating only. UL® approval requires a Class 2 power supply.

WARNING! During autotuning, the controller will set the output to 100% until the process variable rises near the setpoint. Set the setpoint within the safe operating limits of your system.

WARNING! Do not rely solely on the output override feature to shut down your process. Install external safety devices or over-temperature devices for emergency shutdowns.

WARNING! Do not rely solely on the sensor fail alarm to adjust the output in the event of a sensor failure. If the loop is in manual control when a failed sensor alarm occurs, the output is not adjusted. Install independent external safety devices that will shut down the system if a failure occurs.

CAUTION! Never run input leads in bundles with high power wires or near other sources of EMI. This could inductively couple voltage onto the input leads and damage the controller or could induce noise and cause poor measurement and control.

Physically separate high-voltage circuits from low-voltage circuits and from D8 hardware. If possible, install high-voltage ac power circuits in a separate panel.

CAUTION! Without proper grounding, the D8 may not operate properly or may be damaged.

CAUTION! To prevent damage from incorrect connections, do not turn on the ac power before testing the connections.

CAUTION! The EPROM and other components are sensitive to damage from electrostatic discharge (ESD). To prevent ESD damage, use an ESD wrist strap or another antistatic device.

NOTE! For indoor use only.

Avertissements, Attentions et Remarques

AVERTISSEMENT! Le régulateur peut s’avérer défaillant avec un régime de puissance de sortie à 0 % ou à 100 %. Pour éviter tout risque de décès, blessure personnelle, endommagements de l’équipement ou dégâts matériels, veuillez installer des équipements d’arrêt d’urgence externes. Si un décès ou un accident venait à se produire, vous devez installer des équipements d’arrêt d’urgence approuvés qui fonctionnent indépendamment du matériel de contrôle du processus.

AVERTISSEMENT! Risques de choc électrique. Coupez le courant de votre processus tout entier avant de commencer à installer le régulateur.

AVERTISSEMENT! Afin de minimiser les risques d’incendie ou de choc électrique, installez le D8 dans un environnement sous contrôle et relativement épargné par les contaminants.

AVERTISSEMENT! Afin de minimiser les risques de choc électrique, d’incendie, et de dégâts matériels, suivez tous les codes de l’électricité locaux et nationaux. Des diamètres de fils, des fusibles et des disjoncteurs magnéto-thermiques adaptés sont indispensables pour un fonctionnement sécurisé de cet équipement.

AVERTISSEMENT! Utilisez uniquement une alimentation électrique avec une note de rang 2. Une approbation UL® impose une alimentation électrique de rang 2.

AVERTISSEMENT! Pendant le réglage automatique, le régulateur définira la sortie sur 100 % jusqu’à ce que la variable du processus s’élève près de la valeur seuil. Définissez la valeur seuil dans les limites de fonctionnement sécurisées de votre système.

AVERTISSEMENT! Ne comptez pas uniquement sur la fonction de priorité de sortie pour arrêter le processus. Installez les dispositifs de sécurité externes ou de protection contre l’excès de température pour les arrêts d’urgence.

AVERTISSEMENT! Ne comptez pas uniquement sur l’alarme d’échec du capteur pour ajuster la sortie dans l’éventualité d’une défaillance du capteur. Si la boucle est en contrôle manuel lorsqu’une alarme d’échec du capteur se déclenche, la sortie n’est pas ajustée. Installez des dispositifs externes indépendants qui éteindront le système si une défaillance se produit.

ATTENTION! Ne faites jamais fonctionner des conducteurs d’entrée en faisceau avec des câbles à haute puissance ou près d’autres sources d’EMI. Cela pourrait lier par couplage inductif la tension sur les conducteurs d’entrée et endommager le régulateur, ou créer un bruit et être à l’origine de mauvaises mesures et de régulations erronées.

Séparez physiquement les circuits haute-tension des circuits basse-tension et du matériel D8. Si possible, installez des circuits électriques ca haute-tension dans un panneau séparé.
ATTENTION! Sans mise à la terre appropriée, il se peut que le
D8 ne fonctionne pas correctement ou soit endommagé.

ATTENTION! Pour éviter tout dommage causé par des
connexions incorrectes, n'allumez pas l'alimentation électrique
e en ca avant d'avoir testé lesconnexions.

ATTENTION! L'EPROM et les autres composants sont sensibles
aux dégâts provoqués par les décharges électrostatiques (ESD).
Pour éviter de tels dommages, utilisez un bracelet antistatique
ou tout autre dispositif antistatique.

REMARQUE : Destiné à un usage intérieur uniquement.

Technical Assistance
If you encounter a problem with your Watlow® controller, review
your configuration information to verify that your selections are
consistent with your application: inputs, outputs, alarms, limits, etc.
If the problem persists, you can get technical assistance from your
local Watlow representative (see back cover), by e-mailing your
questions to wintechsupport@watlow.com or by dialing +1 (507)
494-5656 between 7 a.m. and 5 p.m. Central Time USA & Canada.
Ask for for an Applications Engineer. Please have the complete
model number available when calling.

Return Material Authorization (RMA)
1. Call Watlow Customer Service, (507) 454-5300, for a Return
Material Authorization (RMA) number before returning any
failed product to Watlow. If you do not know why the product
failed, contact an Application Engineer. All RMA's require:
 • Ship-to address
 • Bill-to address
 • Contact name
 • Phone number
 • Method of return shipment
 • Your P.O. number
 • Detailed description of the problem
 • Any special instructions
 • Name and phone number of person returning
the product
2. Prior approval and an RMA number from the customer
service department is required when returning any product.
Make sure the RMA number is on the outside of the
carton and on all paperwork returned. Ship on a freight
prepaid basis.
3. After we receive your return, we will examine it to verify the
reason for the product failure. Unless otherwise agreed to
in writing, Watlow's standard warranty provisions, which
can be located at www.watlow.com/terms, will apply to any
failed product.
4. In the event that the product is not subject to an applicable
warranty, we will quote repair costs to you and request a
purchase order from you prior to proceeding with the
repair work.
5. Watlow reserves the right to charge for no trouble found
(NTF) returns.

Contact Watlow
1241 Bundy Boulevard
Winona, Minnesota 55987 USA
Phone: +1 (507) 454-5300
Fax: +1 (507) 452-4507
http://www.watlow.com

Warranty
This product is warranted by Watlow for a period of 36 months in
accordance with the terms and conditions set forth on Watlow's
website, which may be accessed at www.watlow.com/terms.

Document
Document Number: 10-32216 Rev –
August 2019

©2019 Watlow Electric Manufacturing Company, all rights
reserved. Watlow® is a registered trademark of Watlow Electric and
Manufacturing Company. Modbus® is a registered trademark of Schneider Automation Incorporated. RSNetWorx, RSLinx and RSLogix are
trademarks of Rockwell Software Inc. DeviceNet is a trademark of the Open DeviceNet Vendors Association. UL® is a registered trademark
of Underwriter's Laboratories, Inc. Windows® is a registered trademark of Microsoft Corporation.
Table of Contents

Chapter 1: System Overview 13
Manual Contents 13
Getting Started 14
 Safety Symbols 14
 Initial Inspection 14
Product Features 14
D8 Parts List 16
Technical Description 17
 D8 17
 TB50 18
 D8 Cabling 18
Safety 18
 External Safety Devices 18
 Power-Fail Protection 19

Chapter 2: Installation 20
Typical Installation 20
Mounting Controller Components 21
 Recommended Tools 21
 Mounting the Controller 22
 Mounting the TB50 24
 Mounting the Power Supply 25
System Wiring 25
 Wiring Recommendations 26
 Noise Suppression 26
 Ground Loops 27
Power Connections 28
 Wiring the Power Supply 28
 Connecting TB50 to the D8 30
Testing the System 30
 TB50 or TB18 Test 30
 Digital Output Test 30
 Digital Input Test 31
Sensor Wiring 31
 Input Wiring Recommendations 33
 Thermocouple Connections 33
 RTD Input Connections 34
 Voltage Input Connections 34
 Current Input Connections 35
Wiring Control and Digital I/O 35
 Output Wiring Recommendations 35
 Cable Tie Wraps 35
 Digital Outputs 35
 Digital Inputs 38
 TB18 Connections 39
 TB50 Connections 40
Analog Outputs 41
 Wiring the Dual DAC 41
 Wiring the Serial DAC 41
Connecting the D8 to a DeviceNet Network 41
 Connector Type 41
 Connector Pinout 42
 Network Length 42
 Baud Rate (Data Rate) 42
 Node Address (MAC ID) 43
 Status Indicators 43

Chapter 3: Communicating by DeviceNet 45
Accessing Data with a DeviceNet Master 45
 About The Electronic Data Sheet (EDS) 45
Setting Parameters via DeviceNet 45
 Non-Numeric Settings 45
 Bit-Wise Values 46
 Decimal Placement for Numeric Values 46
 Decimal Placement for Percentage Values 46
D8 DeviceNet Overview 46
General PID Constants by Application 92
 Proportional Band Only (P) 92
 Proportional with Integral (PI) 92
 Proportional and Integral with Derivative (PID) 92

Control Outputs 93
 Output Control Signals 93
 Output Filter 94
 Reverse and Direct Action 94

Chapter 6: Menu and Parameter Reference 95

Operator Parameters 95
 Set Point 95
 Mode 96
 Heat/Cool Output 96
 Process Variable 97

Overview of the Setup Menus 97

Global Setup Menu 99
 Load Setup From Job 99
 Save Setup As Job 100
 BCD Job Load 100
 BCD Job Load Logic 101
 Mode Override 102
 Mode Override Digital Input Active 102
 Power Up Alarm Delay 103
 Power Up Loop Mode 103
 Keypad Lock 104
 Thermocouple Short Alarm 104
 AC Line Frequency 104
 Digital Output Alarm Polarity 105
 MAC ID 105
 Baud Rate 105
 Module LED 106
 Network LED 106
 Bus Off Count 106
 Model and Firmware Version 106

Input Menu 107
 Input Type 107
 Loop Name 108
 Input Units 108
 Calibration Offset 109
 Reversed Thermocouple Detection 109
 Display Format 110
 Input Range High 110
 Input High Signal 111
 Input Range Low 111
 Input Low Signal 111
 Input Filter 112

Control Menu 112
 Heat/Cool Proportional Band 113
 Heat/Cool Integral 113
 Heat/Cool Derivative 114
 Heat/Cool Manual Reset 114
 Heat/Cool Filter 114
 Hysteresis 115
 Restore Automatic Mode 115

Output Menu 116
 Heat/Cool Output Type 116
 Heat/Cool Cycle Time 117
 Heat/Cool SDAC Signal 117
 Heat/Cool SDAC Low Signal 117
 Heat/Cool SDAC High Signal 118
 Heat/Cool Action 118
 Heat/Cool Power Limit 118
 Heat/Cool Power Limit Time 119
 Sensor Fail Heat/Cool Output 119
 Open Thermocouple Heat/Cool Output Average 120
 Heat/Cool Output Curve 120

Alarms Menu 121
 Alarm High Set Point 121
 Alarm High Function 121
 Alarm High Output 122
 High Deviation Value 122
 High Deviation Function 123
 High Deviation Output 123
 Low Deviation Value 123
 Low Deviation Function 124
 Low Deviation Output 124
 Alarm Low Set Point 124
 Alarm Low Function 125
 Alarm Low Output 125
 Alarm Hysteresis 125
 Alarm Delay 126

Process Variable Retransmit Menu 126
 Heat/Cool Output Retransmit 127
 Heat/Cool Retransmit Low Process Variable 127
 Heat/Cool Retransmit High Process Variable 127

Cascade Menu 128
 Cascade Primary Loop 128
 Cascade Low Set Point 128
List of Figures

Chapter 1: System Overview 13
Figure 1.1 – D8 Rear Views 17
Figure 1.2 – D8 Front Panel 18
Figure 1.3 – TB50 18

Chapter 2: Installation 20
Figure 2.1 – D8 System Components 21
Figure 2.2 – Clearance with DB25 and SCSI Cable 22
Figure 2.3 – Clearance with terminal Blocks (TB1 and TB18) 22
Figure 2.4 – Clearance with TB1 and SCSI Cable 22
Figure 2.5 – Mounting Bracket Clearance 23
Figure 2.6 – Panel Thickness and Cutout Size 23
Figure 2.7 — Mounting the TB50 24
Figure 2.8 – TB50 Mounted on a DIN Rail (Front) 24
Figure 2.9 – TB50 Mounted on DIN Rail (Side) 24
Figure 2.10 – Mounting a TB50 with Standoffs 25
Figure 2.11 – Power Input with Mass Termination Option 28
Figure 2.12 – Power Input with Mass Termination Option 28
Figure 2.13 – Power Connections with the D8 Power Supply 30
Figure 2.14 – Termocouple Connections 34
Figure 2.15 — RTD Connections 34
Figure 2.16 – Voltage Signal Connections 34
Figure 2.17 – Current Signal Connections 35
Figure 2.18 – Digital Output Wiring 36
Figure 2.19 – Sample Heat, Cool and Alarm Output Connections 37
Figure 2.20 – Output Connections Using External Power Supply 37
Figure 2.21 – TB50 Watchdog Timer Output 38
Figure 2.22 – TB18 Watchdog Timer Output 38
Figure 2.23 – Wiring Digital Inputs 39
Figure 2.24 – DeviceNet™ Connector 41
Figure 2.25 – J4 DeviceNet™ Connector Pinout 42
Figure 2.26 – D8 Side with Rotary Switches 43

Chapter 3: Communicating by DeviceNet 45
Figure 3.1 – Four-Loop Produced Static input 51
Figure 3.2 – Four-Loop Consumed Static Output 51
Figure 3.3 – Eight-Loop Produced Static Input 51
Figure 3.4 – Eight-Loop Consumed Static Output 52
Chapter 4: Operation and Setup 61
Figure 4.1 – General Navigation Map 61
Figure 4.2 – Keypad Navigation 62
Figure 4.3 – Loop Display 62
Figure 4.4 – Loop Display with Alarm Code 63
Figure 4.5 – Display for Failed Sensor Alarm 64
Figure 4.6 – Input Scaling 70
Figure 4.7 – Activation and Deactivation of Process Alarms 76
Figure 4.8 – Application Using Process Variable Retransmit 78
Figure 4.9 – Secondary Set Point When Primary Loop Has Heat and Cool Outputs 79
Figure 4.10 – Secondary Set Point When Primary Loop Has Heat Output Only 80
Figure 4.11 – Example Application Using Cascade Control 81
Figure 4.12 – Relationship of Secondary Loop 82
Figure 4.13 – Relationship Between the Process Variable on the Master Loop and the Set Point of the Ratio Loop 83
Figure 4.14 – Application Using Ratio Control 84

Chapter 5: Tuning and Control 87
Figure 5.1 – On/Off Control 88
Figure 5.2 – Proportional Control 88
Figure 5.3 – Proportional and Integral Control 89
Figure 5.4 – Proportional, Integral and Derivative Control 89
Figure 5.5 – Time Proportioning and Distributed Zero Crossing Waveforms 93

Chapter 6: Menu and Parameter Reference 95
Figure 6.1 – Operator Parameter Navigation 95
Figure 6.2 – Setup Menus and Parameters 98
Figure 6.3 – Linear and Nonlinear Outputs 120

Chapter 7: Troubleshooting and Reconfiguring 136
Figure 7.1 – Remove Board Assembly from Case 145
Figure 7.2 – Disconnect Keypad Ribbon Cable from Processor Board 146
Figure 7.3 – Unlatch Boards from Carrier 146
Figure 7.4 – Remove the Standoffs 146
Figure 7.5 – EPROM Location 147
Figure 7.6 – Remove EPROM 147
Figure 7.7 – Battery-Backed RAM Module on the Processor Board 148
Figure 7.8 – Input Circuit 149

Chapter 8: Specifications 153
Figure 8.1 – D8 Module Dimensions Without Cables 154
Figure 8.2 – Clearance with DB25 and SCSI Cable 154
Figure 8.3 – Clearance with Terminal Blocks (TB1 & TB18) 155
Figure 8.4 – Clearance with TB1 and SCSI Cable 155
Figure 8.5 – TB50 Dimensions 156
Figure 8.6 – TB50 Dimensions with SCSI Cable 157
List of Tables

Chapter 1: System Overview 13
Table 1.1 — Ordering Options 16

Chapter 2: Installation 20
Table 2.1 – Cable Recommendations 26
Table 2.2 – Power Connections 29
Table 2.3 — Analog Input Connections Mass Termination Option 32
Table 2.4 — Analog Input Connections Screw Terminal Option 33
Table 2.5 — Digital Output States and Values Stored in the Controller 35
Table 2.6 - Digital Input States and Values Stored in the Controller 38
Table 2.7 – TB18 Connections 39
Table 2.8 – TB50 Connections 40
Table 2.9 – DeviceNet™ Connector 42
Table 2.10 – Maximum Network Speed 42
Table 2.11 – Module Status Indicator Light 44
Table 2.12 – Network Status Indicator Light 44

Chapter 3: Communicating by DeviceNet 45
Table 3.1 – Implied Decimals by Input Type and Display Format 46
Table 3.2 – Address Components 47
Table 3.3 – Elementary Data Types 47
Table 3.4 – Identity Class and Services 48
Table 3.5 – Identity Instance Attributes 48
Table 3.6 – Message Router Class and Services 48
Table 3.7 – Message Router Instance Attributes 49
Table 3.8 – DeviceNet™ Class and Services 49
Table 3.9 – DeviceNet™ Class Attributes 49
Table 3.10 – DeviceNet™ Instance Attributes 49
Table 3.11 – Assembly Class and Services 50
Table 3.12 – Assembly Instance Attributes 50
Table 3.13 – Number of Bytes 50
Table 3.14 – Connection Class and Services 52
Table 3.15 – Connection Instance Attributes 52
Table 3.16 – Input Class and Services 53
Table 3.17 – Input Class Attributes (Instance 0) 53
Table 3.18 – Input Instance Attributes (Instances 1 to 4 or 8) 53
Table 3.19 – Output Class and Services 54
Table 3.20 – Output Class Attributes (Instance 0) 54
Table 3.21 – Output Instance Attributes (Instances 1 to 4 or 8) 54
Table 3.22 – Control Class and Services 55
Table 3.23 – Control Class Attributes (Instance 0) 55
Table 3.24 – Control Instance Attributes (Instances 1 to 4 or 8) 55
Table 3.25 – Alarm Class and Services 56
Table 3.26 – Alarm Class Attributes (Instance 0) 56
Table 3.27 – Alarm Instance Attributes (Instances 1 to 4 or 8) 56
Table 3.28 – PV Retransmit Class and Services 57
Table 3.29 – PV Retransmit Class Attributes (Instance 0) 57
Table 3.30 – PV Retransmit Instance Attributes (Instances 1 to 4 or 8) 57
Table 3.31 – Ratio Class and Services 58
Table 3.32 – Ratio Class Attributes (Instance 0) 58
Table 3.33 – Ratio Instance Attributes (Instances 1 to 4 or 8) 58
Table 3.34 – Cascade Class and Services 58
Table 3.35 – Cascade Class Attributes (Instance 0) 59
Table 3.36 – Cascade Instance Attributes (Instances 1 to 4 or 8) 59
Table 3.37 – Global Class and Services 59
Table 3.38 – Global Class Attributes (Instance 0) 59
Table 3.39 – Global Instance Attributes (Instance 1) 59

Chapter 4: Operation and Setup 61
Table 4.1 – Control Modes 63
Table 4.2 – Alarm Codes and Messages for Process and Failed Sensor Alarms 64
Table 4.3 – System Alarm Messages 65
Table 4.4 – Input Readings 71
Table 4.5 – Scaling Values 71
Table 4.6 – Input Readings and Calculations 71
Table 4.7 – Scaling Values 72
Table 4.8 – Parameters Settings for Process Variable Retransmit Example 78
Table 4.9 – Parameter Settings for the Primary Loop in the Cascade Example 81
Table 4.10 – Parameter Settings for the Secondary Loop in the Cascade Example 81
Table 4.11 – Ratio Control Settings for the Ratio Loop (Loop 2) in the Example 84
Table 4.12 – Parameters Settings for the Ratio Loop (Loop 2) for the Example 85
Table 4.13 – Parameters Settings for the Master Loop (Loop 1) in the Example 86
Table 4.14 – Parameter Settings for the Ratio Loop (Loop 2) in the Example 86

Chapter 5: Tuning and Control 87
Table 5.1 – Proportional Band Settings 90
Table 5.2 – Integral Term and Reset Settings 91
Table 5.3 – Derivative Term Versus Rate 91
Table 5.4 – General PID Constants 92

Chapter 6: Menu and Parameter Reference 95
Table 6.1 – Control Modes 96
Table 6.2 – D8 Setup Menus 97
Table 6.3 – Values for BCD Job Load 101
Table 6.4 – Digital Input States Required to Load Each Job 101
Table 6.5 – Power Up Loop Modes 103
Table 6.6 – Digital Output Alarm Polarity 105
Table 6.7 – Input Types and Ranges 107
Table 6.8 – Characters for the Loop Name and Input Units Parameters 108
Table 6.9 – Calibration Offset Ranges 109
Table 6.10 – Display Formats 110
Table 6.11 – Proportional Band Values 113
Table 6.12 – Values for the Control Hysteresis and Deviation Alarm Parameters 115
Table 6.13 – Heat and Cool Output Types 116
Table 6.14 – Alarm Functions 122
Table 6.15 – Values for Alarm Hysteresis 126
Table 6.16 – Bit Positions for Alarm Enable and Alarm Function 133
Table 6.17 – Bit Positions for Alarm Status and Alarm Acknowledge 134
Table 6.18 – System Status Bits 135
Table 6.19 – DeviceNet™ Value for Watchdog Inactivity Fault 135

Chapter 7: Troubleshooting and Reconfiguring 136
Table 7.1 – Operator Response to Process Alarms 137
Table 7.2 – Other Symptoms 138
Table 7.3 – Module Status Indicator States and Descriptions 139
Table 7.4 – Network Status Indicator Light 140
Table 7.5 – Resistor Values for Current Inputs 149
Table 7.6 – Resistor Locations for Current Inputs 149
Table 7.7 – Resistor Values for Voltage Inputs 149
Table 7.8 – Resistor Locations for Voltage Inputs 150
Table 7.9 – Resistor Locations for RTD Inputs 150

Chapter 8: Specifications 153
Table 8.1 – Agency Approvals / Compliance 153
Table 8.2 – Environmental Specifications 153
Table 8.3 – D8 with Standard SCSI 154
Table 8.4 – D8 Connections 155
Table 8.5 – TB50 Physical Dimensions 156
Table 8.6 – TB50 Connections 156
Table 8.7 – TB50 with Straight SCSI 156
Table 8.8 – Analog Inputs 157
Table 8.9 – Thermocouple Range and Resolution 158
Table 8.10 – RTD Range and Resolution 158
Table 8.11 – Input Resistance for Voltage Inputs 158
Table 8.12 – Digital Inputs 159
Table 8.13 – Digital Outputs Control / Alarm 159
Table 8.14 – 5VDC Output (Power to Operate Solid-State Relays) 160
Table 8.15 – Communications 160
Table 8.16 – D8 Power Requirements 160
Chapter 1: System Overview

Manual Contents

This manual describes how to install, set up, and operate a D8 series controller. Each chapter covers a different aspect of your control system and may apply to different users:

- **Chapter 1: System Overview** provides a component list and summary of features for the D8 series controllers.
- **Chapter 2: Installation** provides detailed instructions on installing the D8 series controller and its peripherals.
- **Chapter 3: Communicating by DeviceNet** explains how to add the D8 controller to a network and how to access controller data via DeviceNet™.
- **Chapter 4: Operation and Setup** provides instructions about operating and setting up the D8.
- **Chapter 5: Tuning and Control** describes available control algorithms and provides suggestions for applications.
- **Chapter 6: Menu and Parameter Reference** provides detailed descriptions of all menus and parameters for controller setup.
- **Chapter 7: Troubleshooting and Reconfiguring** includes troubleshooting, upgrading, and reconfiguring procedures for technical personnel.
- **Chapter 8: Specifications** lists detailed specifications of the controller and optional components.
Getting Started

The following sections provide information regarding product features, technical descriptions, safety requirements, and preparation for operation.

Safety Symbols

These symbols are used throughout this manual:

- **NOTE!** Marks a short message to alert you to an important detail.
- **CAUTION!** Information that is important for protecting your equipment and performance. Be especially careful to read and follow all cautions that apply to your application.
- **WARNING!** Safety alert appears with information that is important for protecting you, others and equipment from damage. Pay very close attention to all warnings that apply to your application.

Initial Inspection

Accessories may or may not be shipped in the same container as the D8, depending upon their size. Check the shipping invoice against the contents received in all boxes.

Product Features

D8 series controllers offer high-performance closed-loop control. The D8 provides four or eight independent control loops with analog inputs—thermocouples, RTDs and process—and features DeviceNet™ communications. When used as a stand-alone controller, you may operate the D8 via the two-line 16-character display and touch keypad. You can also use it as the key element in a computer-supervised data acquisition and control system. The D8 can be locally or remotely controlled via its DeviceNet™ communications interface.

D8 features include:

- **Direct Connection of Mixed Thermocouple Sensors:** Connect most thermocouples to the controller with no hardware modifications. Thermocouple inputs feature reference junction compensation, linearization, offset calibration to correct for sensor inaccuracies, detection of open, shorted or reversed thermocouples, and a choice of Fahrenheit or Celsius display.

- **Accepts Resistive Temperature Detectors (RTDs):** Use 3-wire, 100Ω, platinum, 0.00385-curve sensors. Special inputs must be installed.

- **Automatic Scaling for Linear Analog Inputs:** The D8 series automatically scales process inputs used with industrial process sensors. Enter two points, and all input values are automatically scaled. Special inputs must be installed.

- **Dual Outputs:** The D8 series includes both heat and cool control outputs for each loop. Independent control parameters are provided for each output.

- **Independently Selectable Control and Output Modes:** Set each control output to on/off, time proportioning, Serial DAC (digital-to-analog converter) or distributed zero crossing mode. Set up to two outputs per loop for on/off, P, PI or PID control with reverse or direct action.
• **Boost Output Function:** Set digital outputs to function as boost on/off control in association with any alarm.

• **Flexible Alarms:** Independently set high and low alarms and high and low deviation alarms for each loop. Alarms can activate a digital output by themselves, or they can be grouped with other alarms to activate an output.

• **Global Alarm Output:** Any alarm event activates the global alarm output.

• **CPU Watchdog:** The CPU watchdog timer output notifies you of system failure.

• **Keypad or DeviceNet™ Operation:** Set up and run the controller from the keypad or via the DeviceNet™ interface.

• **DeviceNet™ Communications:** Connect software, programmable logic controllers and other master devices using the widely supported DeviceNet™ protocol.

• **Multiple Job Storage:** Store up to eight jobs in the controller's battery-backed memory. Load a job through the keypad, digital inputs or software. Each job is a set of operating conditions, including set points and alarm limits.

• **Nonlinear Output Curves:** Select either of two nonlinear output curves for each control output.

• **Autotuning:** Use the autotune feature to set up your system quickly and easily. The internal expert system table finds the correct PID parameters for your process.

• **Low Power Shutdown:** The controller shuts down and turns off all outputs when it detects the input voltage drop below the minimum safe operating level.

• **Process Variable Retransmit:** Scale a temperature or process and convert it to an analog output for external devices such as chart recorders.

• **Two-Zone Cascade Control:** Control thermal systems with long lag times, which cannot be accurately controlled with a single loop.

• **Ratio or Offset Control:** Control one process as a ratio or offset of another process.

• **Remote Analog Set Point:** Scale an external voltage or current source to provide a set point for a loop.
D8 Parts List

You may have received one or more of the following components. See Table 1.1 below for configuration information.

- D8 series controller with mounting collar and brackets
- TB50 with 50-pin SCSI cable
- Special input resistors (installed in D8)

Table 1.1 — Ordering Options

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>OPTIONS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Loops</td>
<td>4 Loops</td>
<td>The number of analog inputs and control loops that can be controlled based on feedback from the analog inputs.</td>
</tr>
<tr>
<td></td>
<td>8 Loops</td>
<td></td>
</tr>
<tr>
<td>Firmware</td>
<td>Standard</td>
<td>Includes closed-loop, PID control, auto-tune, alarms, job memory and failed sensor detection</td>
</tr>
<tr>
<td></td>
<td>(Other)</td>
<td>Customer or application specific options</td>
</tr>
<tr>
<td>User Interface</td>
<td>Keypad Overlay and VFD Display</td>
<td>Integrated user interface.</td>
</tr>
<tr>
<td></td>
<td>No Display or Keypad</td>
<td>Interface via DeviceNet communications only</td>
</tr>
<tr>
<td>Analog Input Termination</td>
<td>Screw Terminals (TB1)</td>
<td>Screw terminal connections for sensor and power inputs</td>
</tr>
<tr>
<td></td>
<td>Mass Termination (DB25)</td>
<td>DB25 connection for sensor and power inputs</td>
</tr>
<tr>
<td>Digital I/O Termination</td>
<td>Screw Terminals (TB18)</td>
<td>Screw terminals for digital inputs and outputs</td>
</tr>
<tr>
<td></td>
<td>Mass Termination (SCSI)</td>
<td>SCSI connector for digital inputs and outputs</td>
</tr>
<tr>
<td>Digital I/O Termination Board Accessory</td>
<td>None</td>
<td>No external terminal board included</td>
</tr>
<tr>
<td></td>
<td>TB50 Terminal Board</td>
<td>Accessory board with SCSI connector and 50 screw terminals for digital inputs and outputs</td>
</tr>
<tr>
<td>Digital I/O Termination Cable Accessory</td>
<td>None</td>
<td>Accessory cable to connect digital I/O signals between the SCSI connector on the controller and the TB50 board</td>
</tr>
<tr>
<td>Analog Input 1</td>
<td>Options for all units:</td>
<td>Standard units accept thermocouples on all inputs. Controllers can be equipped with resistors to scale signals for various types of sensors. These resistors must be factory installed.</td>
</tr>
<tr>
<td></td>
<td>Standard (Thermocouples and -10 to 60mV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linear Current: 0-20mA DC / 4-20mA DC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linear Voltage: 0-5VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linear Voltage: 0-10VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 Ohm RTD Tenths Degree</td>
<td></td>
</tr>
</tbody>
</table>
Technical Description

This section contains a technical description of each component of the D8 series controller.

D8

The D8 is housed in a 1/8-DIN panel mount package. It contains the central processing unit (CPU), random access memory (RAM) with a built-in battery, flash memory, communications, digital I/O, analog inputs, display and touch keypad.

The D8 has the following features:

- Keypad and two-line, 16-character display.
- Options for mass termination and screw terminals for the power and analog inputs.
- Micro-style connector for DeviceNet™.
- Input power of 12 to 24VDC at 1 ampere.
- 50-pin SCSI cable to connect the digital inputs and outputs to the 50-terminal block (TB50). The D8 is available with an 18-terminal block (TB18) in place of the SCSI connector, as shown in Figure 1.1 above.
- Nonvolatile flash memory for storage of firmware.
- Battery-backed storage of operating parameters. If a power loss occurs, the operating parameters are stored in memory. The battery has a ten-year shelf life, and it is not used when the controller is on.
- Microprocessor control of all calculations for input signal linearization, PID control, alarms, and communications.

Front Panel Description

The display and keypad provide an intelligent way to operate the controller. The display has 16 alphanumeric or graphic characters per line. The eight-key keypad allows you to change the operating parameters, controller functions and displays.

The displays show process variables, set points and output levels for each loop. A single-loop display, scanning display and alarm display offer a real-time view of process conditions. For useful tips, help and menu information, press i from any screen.
TB50

The TB50 is a screw-terminal interface for control wiring. It allows you to connect power controllers and other discrete I/O devices to the D8. The screw terminal blocks accept wires as large as 18 AWG (0.75 mm²). A 50-pin SCSI cable connects the TB50 to the D8.

D8 Cabling

Watlow provides optional cables to support installing the D8. A 50-pin SCSI cable connects the TB50 to the CLS200.

Safety

Watlow has made every effort to ensure the reliability and safety of this product. In addition, we have provided recommendations that will allow you to safely install and maintain this controller.

External Safety Devices

The D8 controller may fail full-on (100 percent output power) or full-off (0 percent output power), or may remain full-on if an undetected sensor failure occurs.
Design your system to be safe even if the controller sends a 0 percent or 100 percent output power signal at any time. Install independent, external safety devices such as the Watlow TLM-8 that will shut down the system if a failure occurs.

Typically, a shutdown device consists of an agency-approved high/low process limit controller that operates a shutdown device such as a mechanical contactor. The limit controller monitors for a hazardous condition such as an under-temperature or over-temperature fault. If a hazardous condition is detected, the limit controller sends a signal to open the contactor.

The safety shutdown device (limit controller and contactor) must be independent from the process control equipment.

WARNING! The controller may fail in a 0 percent or 100 percent output power state. To prevent death, personal injury, equipment damage or property damage, install external safety shutdown devices that operate independently from the process control equipment.

With proper approval and installation, thermal fuses may be used in some processes.

Power-Fail Protection

In the occurrence of a sudden loss of power, the D8 controller can be programmed to reset the control outputs to off (this is the default). The controller can also be configured to restart to data stored in memory.

A memory-based restart might create an unsafe process condition for some installations. Use a memory-based restart only if you are certain your system will safely restart. See Power Up Loop Mode on page 103.

When using the controller with a computer or other master device, you can program the software to automatically reload desired operating constants or process values on powerup. These convenience features do not eliminate the need for independent safety devices.

Contact Watlow immediately if you have any questions about system safety or system operation.
Chapter 2: Installation

This chapter describes how to install the D8 series controller and its peripherals. Installation of the controller involves the following procedures:

- Determining the best location for the controller
- Mounting the controller and TB50
- Power connection
- Input wiring
- Communications wiring
- Output wiring

WARNING! Risk of electric shock. Shut off power to your entire process before you begin installation of the controller.

WARNING! The controller may fail in a 0 percent or 100 percent power output state. To prevent death, personal injury, equipment damage or property damage, install external safety shutdown devices that operate independently from the process control equipment.

Typical Installation

Figure 2.1 on the following page shows typical installations of the controller with the TB50 and the TB18 terminal blocks. The type of terminal block you use greatly impacts the layout and wiring of your installation site. See Figure 2.2 to Figure 2.10 to determine potential space requirements.

We recommend that you read this entire chapter before beginning the installation procedure. This will help you to carefully plan and assess the installation.
Mounting Controller Components

Install the controller in a location free from excessive heat (below 50ºC [122°F]), dust and unauthorized handling. Electromagnetic and radio frequency interference can induce noise on sensor wiring. Choose locations for the D8 and TB50 such that wiring can be routed clear of sources of interference such as high voltage wires, power switching devices and motors.

NOTE! For indoor use only.

WARNING! To reduce the risk of fire or electric shock, install the D8 in a controlled environment, relatively free of contaminants.

Recommended Tools

Use any of the following tools to cut a hole of the appropriate size in the panel.

- Jigsaw and metal file, for stainless steel and heavyweight panel doors.
- 1/8-DIN rectangular punch for most panel materials and thicknesses.
- Nibbler and metal file, for aluminum and lightweight panel doors.

You will also need these tools:

- Phillips head screwdriver
- 1/8-inch (3 mm) flathead screwdriver for wiring
- Multimeter
Mounting the Controller

Mount the controller before you mount the terminal block, or do any wiring. The controller’s placement affects placement and wiring considerations for the other components of your system. Ensure that there is enough clearance for mounting brackets, terminal blocks, and cable and wire connections.

\[\text{Figure 2.2 – Clearance with DB25 and SCSI Cable}\]

\[\text{Figure 2.3 – Clearance with terminal Blocks (TB1 and TB18)}\]

\[\text{Figure 2.4 – Clearance with TB1 and SCSI Cable}\]
We recommend you mount the controller in a panel not more than 0.2 in. (5 mm) thick.

1. Choose a panel location free from excessive heat (below 50°C [122°F]), dust, and unauthorized handling. (Make sure there is adequate clearance for the mounting hardware, terminal blocks, and cables.

2. Temporarily cover slots in the metal housing so that dirt, metal filings, and pieces of wire do not enter the housing and lodge in the electronics.

3. Cut a hole in the panel 1.80 in. (46 mm) by 3.63 in. (92 mm) as shown above. Use caution; the dimensions given here have 0.02 in. (0.5 mm) tolerances.

4. Remove the brackets and collar from the controller, if they are already in place.

5. Slide the controller into the panel cutout.

6. Slide the mounting collar over the back of the controller, making sure the mounting screw indentations face toward the back of the controller.

7. Loosen the mounting bracket screws enough to allow for the mounting collar and panel thickness. Place each mounting bracket into the mounting slots (head of the screw facing the back of the controller). Push each bracket backward then to the side to secure it to the controller case.

8. Make sure the controller is seated properly. Tighten the installation screws firmly against the collar to secure the unit. Ensure that the end of the mounting screws fit into the indentations on the mounting collar.
Mounting the TB50

There are two ways you can mount the TB50: use the preinstalled DIN rail mounting brackets or use the plastic standoffs. Follow the corresponding procedure to mount the board.

Figure 2.7 — Mounting the TB50

DIN Rail Mounting

Snap the TB50 on to the DIN rail by placing the hook side on the rail first, then pushing the snap latch side in place. (See Figure 2.8.)

Figure 2.8 — TB50 Mounted on a DIN Rail (Front)

To remove the TB50 from the rail, use a flathead screwdriver to unsnap the bracket from the rail. (See Figure 2.9.)

Figure 2.9 — TB50 Mounted on DIN Rail (Side)
Mounting with Standoffs

1. Remove the DIN rail mounting brackets from the TB50.
2. Select a location with enough clearance to remove the TB50, its SCSI cable and the controller itself.
3. Mark the four mounting holes.
4. Drill and tap four mounting holes for #6 (3.5 mm) screws or bolts.
5. Mount the TB50 with four screws or bolts.

There are four smaller holes on the terminal board. Use these holes to secure wiring to the terminal block with tie wraps.

![Figure 2.10 – Mounting a TB50 with Standoffs](image)

Mounting the Power Supply

Refer to the power supply manufacturer’s instructions for mounting information. Choose a Class 2 power supply that supplies an isolated regulated 12 to 24VDC at 1A.

Mounting Environment

Leave enough clearance around the power supply so that it can be removed.

System Wiring

Successful installation and operation of the control system can depend on placement of the components and on selection of the proper cables, sensors, and peripheral components.

Routing and shielding of sensor wires and proper grounding of components can insure a robust control system. This section includes wiring recommendations, instructions for proper grounding and noise suppression, and considerations for avoiding ground loops.

WARNING! To reduce the risk of electrical shock, fire, and equipment damage, follow all local and national electrical codes. Correct wire sizes, fuses and thermal breakers are essential for safe operation of this equipment.
CAUTION! Do not wire bundles of low-voltage signal and control circuits next to bundles of high voltage ac wiring. High voltage may be inductively coupled onto the low-voltage circuits, which may damage the controller or induce noise and cause poor control.

Physically separate high-voltage circuits from low-voltage circuits and from D8 hardware. If possible, install high-voltage ac power circuits in a separate panel.

Wiring Recommendations

Follow these guidelines for selecting wires and cables:

- Use stranded wire. (Solid wire can be used for fixed service; it makes intermittent connections when you move it for maintenance.)
- Use 20 AWG (0.5 mm²) thermocouple extension wire. Larger or smaller sizes may be difficult to install, may break easily, or may cause intermittent connections.
- Use shielded wire. The electrical shield protects the signals and the D8 from electrical noise. Connect one end of the input and output wiring shield to earth ground.
- Use copper wire for all connections other than thermocouple sensor inputs.

Table 2.1 – Cable Recommendations

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>MFR. P/N</th>
<th>NO. OF WIRES</th>
<th>AWG</th>
<th>MM²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Inputs</td>
<td>Belden 9154</td>
<td>2</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Belden 8451</td>
<td>2</td>
<td>22</td>
<td>0.5</td>
</tr>
<tr>
<td>RTD Inputs</td>
<td>Belden 8772</td>
<td>3</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Belden 9770</td>
<td>3</td>
<td>22</td>
<td>0.5</td>
</tr>
<tr>
<td>Thermocouple Inputs</td>
<td>Thermocouple Ext. Wire</td>
<td>2</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>Control Outputs and Digital I/O</td>
<td>Belden 9539</td>
<td>9</td>
<td>24</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Belden 9542</td>
<td>20</td>
<td>24</td>
<td>0.2</td>
</tr>
<tr>
<td>Analog Outputs</td>
<td>Belden 9154</td>
<td>2</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Belden 8451</td>
<td>2</td>
<td>22</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Noise Suppression

The D8 outputs are typically used to drive solid state relays. These relays may in turn operate more inductive types of loads such as electromechanical relays, alarm horns and motor starters. Such devices may generate electromagnetic interference (EMI, or noise). If the controller is placed close to sources of EMI, it may not function correctly. Below are some tips on how to recognize and avoid problems with EMI.

For earth ground wire, use a large gauge and keep the length as short as possible. Additional shielding may be achieved by connecting a chassis ground strap from the panel to D8 case.
Symptoms of Noise
If your controller displays the following symptoms, suspect noise:

- The display screen blanks out and then reenergizes as if power had been turned off for a moment.
- The process variable value is incorrect on the controller display.

Noise may also damage the digital output circuit such that the digital outputs will not turn on. If the digital output circuit is damaged, return the controller to Watlow for repair.

Avoiding Noise
To avoid or eliminate most RFI/EMI noise problems:

- Connect the D8 case to earth ground. The D8 system includes noise suppression circuitry. This circuitry requires proper grounding.
- Separate the 120VAC and higher power leads from the low-level input and output leads connected to the D8 series controller. Do not run the digital I/O or control output leads in bundles with ac wires.
- Where possible, use solid state relays (SSRs) instead of electromechanical relays. If you must use electromechanical relays, avoid mounting them in the same panel as the D8 series equipment.
- If you must use electromechanical relays and you must place them in a panel with D8 series equipment, use a 0.01 microfarad capacitor rated at 1000VAC (or higher) in series with a 47Ω, 0.5 watt resistor across the normally open contacts of the relay load. This is known as a snubber network and can reduce the amount of electrical noise.
- You can use other voltage suppression devices, but they are not usually required. For instance, you can place a metal oxide varistor (MOV) rated at 130VAC for 120VAC control circuits across the load, which limits the peak ac voltage to about 180VAC. You can also place a transorb (back-to-back zener diodes) across the digital output, which limits the digital output voltage.

Additional Recommendations for a Noise Immune System
We strongly recommended the following:

- Isolate outputs through solid state relays, where possible.
- Isolate RTDs or “bridge” type inputs from ground.
- Isolate digital inputs from ground through solid state relays. If this is not possible, then make sure the digital input is the only connection to earth ground other than the chassis ground.

Ground Loops
Ground loops occur when current passes from the process through the controller to ground. This can cause instrument errors or malfunctions.

A ground loop may follow one of these paths, among others:

- From one sensor to another.
- From a sensor to the dc power supply.
The best way to avoid ground loops is to minimize unnecessary connections to ground. Do not connect any of the following terminals to each other or to earth ground:

- Power supply dc common
- On J1 or TB1 any analog common
- J2 pin 2 or TB2 terminal 2 (DC power common)

Do not connect the analog common terminals to the other terminals listed above.

Power Connections

This section explains how to make power connections to the D8 and the TB50.

WARNING! Use a power supply with a Class 2 rating only. UL® approval requires a Class 2 power supply.

Connect power to the controller before any other connections. This allows you to ensure that the controller is working before any time is taken installing inputs and outputs.
Table 2.2 - Power Connections

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>POWER SUPPLY</th>
<th>D8 J2</th>
<th>D8 TB2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Power (Controller)</td>
<td>+12 to 24VDC</td>
<td>J2-1</td>
<td>+</td>
</tr>
<tr>
<td>DC Common</td>
<td>12 to 24VDC Common</td>
<td>J2-2</td>
<td>-</td>
</tr>
<tr>
<td>Earth Ground</td>
<td>Ground</td>
<td>J2-3</td>
<td></td>
</tr>
</tbody>
</table>

1. Connect the dc common terminal on the power supply to the dc common (-) terminal on D8 TB2 or pin 2 on J2.
2. Connect the positive terminal on the power supply to the dc positive (+) terminal on D8 TB2 or pin 1 on J2.
3. If using an isolated dc output or another power supply to power the loads, connect the dc common of the supply powering the loads to the dc common of the supply powering the controller.
4. Use the ground connector on TB2 or pin 3 on J2 for chassis ground. This terminal is connected to the CLS200 chassis and must be connected to earth ground.
5. Connect 120/240VAC power to the power supply.

NOTE! Connect the dc common of the power supply used for loads to the dc common of the supply powering the controller. If the supplies are not referenced to one another, the controller’s outputs will not be able to switch the loads.

NOTE! When making screw terminal connections, tighten to 4.5 to 5.4 inch-pound (0.5 to 0.6Nm).

CAUTION! Without proper grounding, the D8 may not operate properly or may be damaged.

CAUTION! To prevent damage from incorrect connections, do not turn on the ac power before testing the connections as explained in See Testing the System on page 30.

NOTE! Do not connect the controller’s dc common (COM) to earth ground. Doing so will defeat the noise protection circuitry, making measurements less stable.
Connecting TB50 to the D8

1. Connect the SCSI cable to the controller.
2. Connect the SCSI cable to the TB50.

Testing the System

This section explains how to test the controller after installation and prior to making field wiring connections.

TB50 or TB18 Test

Use this procedure to verify that the TB50 or TB18 is properly connected and supplied with power:

1. Turn on power to the D8. The display should read Calculating checksum, then show the single-loop display. If you do not see these displays, disconnect power and check wiring and power supply output.
2. Measure the +5VDC supply at the TB50 or TB18:
 a. Connect the voltmeter’s common lead to TB50 terminal 3 or TB18 terminal 2.
 b. Connect the voltmeter’s positive lead to TB50 or TB18 screw terminal 1. The voltage should be +4.75 to +5.25VDC.

Digital Output Test

Use this procedure to test the controller’s outputs before loads are connected. If using it at another time for troubleshooting, disconnect loads from outputs before testing.

1. Connect a 500Ω to 100kΩ resistor between TB50 or TB18 screw terminal 1 and a digital output terminal. See See Table 2.8 —TB50 Connections on page 40, for TB18 connections or See Table 2.9 – DeviceNet™ Connector on page 42, for TB 50 connections.
2. Connect the voltmeter’s positive lead to terminal 1 on the TB50 or TB18.
3. Connect the voltmeter’s common lead to the digital output terminal.
4. Use the digital output test in the I/O tests menu to turn the digital output on and off. See Test Digital Output 1 to 20 on page 132. When the output is off, the output voltage should be less than 1V. When the output is on, the output voltage should be between 4.75 and 5.25V.

NOTE! By default, heat outputs are enabled. Only disabled outputs may be turned on using the manual I/O test. To test heat outputs, set the corresponding loop to manual mode 100 percent output. See Changing the Control Mode and Output Power on page 66.

Digital Input Test

Use the following procedure to test digital inputs before connecting to field devices:

1. Disconnect any system wiring from the input to be tested.
2. Go to the *Digital inputs* test in the *I/O tests* menu. This test shows whether the digital inputs are off (open) or on (closed).
3. Attach a wire to the terminal of the digital input you want to test. See Table 2.7 – TB18 Connections on page 39. or See Table 2.8 —TB50 Connections on page 40. for connections.
 a. When the wire is connected only to the digital input terminal, the digital input test should show that the input is off (open).
 b. When you connect the other end of the wire to the controller common (TB50 terminal 3 or TB18 terminal 2), the digital input test should show that the input is on (closed).

Sensor Wiring

This section describes how to properly connect thermocouples, RTDs, current and voltage inputs to the controller. The controller can accept any mix of available input types. Some input types require that special scaling resistors be installed (done by Watlow before the controller is delivered).

Sensors connect via a DB25 cable to J1 on units with the mass termination option for analog inputs and at screw terminals TB1 on units with at the screw termination option. The tables below list the connections for each sensor and the illustrations that follow show how to connect the various sensor types.

CAUTION! Never run input leads in bundles with high power wires or near other sources of EMI. This could inductively couple voltage onto the input leads and damage the controller, or could induce noise and cause poor measurement and control.
Table 2.3 — Analog Input Connections Mass Termination Option

<table>
<thead>
<tr>
<th>J1 (DB25) PIN NUMBER</th>
<th>NAME IN FIGURES</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+CH1</td>
<td>Channel 1 positive input</td>
</tr>
<tr>
<td>2</td>
<td>-CH1</td>
<td>Channel 1 negative input</td>
</tr>
<tr>
<td>3</td>
<td>Com</td>
<td>Analog common</td>
</tr>
<tr>
<td>4</td>
<td>+CH2</td>
<td>Channel 2 positive input</td>
</tr>
<tr>
<td>5</td>
<td>-CH2</td>
<td>Channel 2 negative input</td>
</tr>
<tr>
<td>6</td>
<td>Com</td>
<td>Analog common</td>
</tr>
<tr>
<td>7</td>
<td>+CH3</td>
<td>Channel 3 positive input</td>
</tr>
<tr>
<td>8</td>
<td>-CH3</td>
<td>Channel 3 negative input</td>
</tr>
<tr>
<td>9</td>
<td>Com</td>
<td>Analog common</td>
</tr>
<tr>
<td>10</td>
<td>+CH4</td>
<td>Channel 4 positive input</td>
</tr>
<tr>
<td>11</td>
<td>-CH4</td>
<td>Channel 4 negative input</td>
</tr>
<tr>
<td>12</td>
<td>Com</td>
<td>Analog common</td>
</tr>
<tr>
<td>13</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>+CH5</td>
<td>Channel 5 positive input</td>
</tr>
<tr>
<td>15</td>
<td>-CH5</td>
<td>Channel 5 negative input</td>
</tr>
<tr>
<td>16</td>
<td>Com</td>
<td>Analog common</td>
</tr>
<tr>
<td>17</td>
<td>+CH6</td>
<td>Channel 6 positive input</td>
</tr>
<tr>
<td>18</td>
<td>-CH6</td>
<td>Channel 6 negative input</td>
</tr>
<tr>
<td>19</td>
<td>Com</td>
<td>Analog common</td>
</tr>
<tr>
<td>20</td>
<td>+CH7</td>
<td>Channel 7 positive input</td>
</tr>
<tr>
<td>21</td>
<td>-CH7</td>
<td>Channel 7 negative input</td>
</tr>
<tr>
<td>22</td>
<td>Com</td>
<td>Analog common</td>
</tr>
<tr>
<td>23</td>
<td>+CH8</td>
<td>Channel 8 positive input</td>
</tr>
<tr>
<td>24</td>
<td>-CH8</td>
<td>Channel 8 negative input</td>
</tr>
<tr>
<td>25</td>
<td>Com</td>
<td>Analog common</td>
</tr>
</tbody>
</table>
Table 2.4 — Analog Input Connections Screw Terminal Option

<table>
<thead>
<tr>
<th>TB1 TERMINAL NUMBER</th>
<th>LABEL</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH 1 IN+</td>
<td>Channel 1 positive input</td>
</tr>
<tr>
<td>2</td>
<td>CH 1 IN-</td>
<td>Channel 1 negative input</td>
</tr>
<tr>
<td>3</td>
<td>CH 2 IN+</td>
<td>Channel 2 positive input</td>
</tr>
<tr>
<td>4</td>
<td>CH 2 IN-</td>
<td>Channel 2 negative input</td>
</tr>
<tr>
<td>5</td>
<td>CH 3 IN+</td>
<td>Channel 3 positive input</td>
</tr>
<tr>
<td>6</td>
<td>CH 3 IN-</td>
<td>Channel 3 negative input</td>
</tr>
<tr>
<td>7</td>
<td>CH 4 IN+</td>
<td>Channel 3 positive input</td>
</tr>
<tr>
<td>8</td>
<td>CH 4 IN-</td>
<td>Channel 3 negative input</td>
</tr>
<tr>
<td>9</td>
<td>Com</td>
<td>Analog Common</td>
</tr>
<tr>
<td>10</td>
<td>Com</td>
<td>Analog Common</td>
</tr>
<tr>
<td>11</td>
<td>CH 5 IN+</td>
<td>Channel 5 positive input</td>
</tr>
<tr>
<td>12</td>
<td>CH 5 IN-</td>
<td>Channel 5 negative input</td>
</tr>
<tr>
<td>13</td>
<td>CH 6 IN+</td>
<td>Channel 6 positive input</td>
</tr>
<tr>
<td>14</td>
<td>CH 6 IN-</td>
<td>Channel 6 negative input</td>
</tr>
<tr>
<td>15</td>
<td>CH 7 IN+</td>
<td>Channel 7 positive input</td>
</tr>
<tr>
<td>16</td>
<td>CH 7 IN-</td>
<td>Channel 7 negative input</td>
</tr>
<tr>
<td>17</td>
<td>CH 8 IN+</td>
<td>Channel 8 positive input</td>
</tr>
<tr>
<td>18</td>
<td>CH 8 IN-</td>
<td>Channel 8 negative input</td>
</tr>
<tr>
<td>19</td>
<td>Com</td>
<td>Analog Common</td>
</tr>
</tbody>
</table>

1 Terminals 11 to 18 are not used with a 4-loop controller.

Input Wiring Recommendations

Use multicolored stranded shielded cable for analog inputs. Watlow recommends that you use 20 AWG wire (0.5 mm²). If the sensor manufacturer requires it, you can also use 24 or 22 AWG wiring (0.2 mm²). Most inputs use a shielded twisted pair; some require a 3-wire input.

The controller accepts the following inputs without any special scaling resistors:

- J, K, T, S, R, B and E thermocouples
- Process inputs with ranges between -10 and 60mV

To avoid thermocouple open alarms on unused inputs, either set the Input type parameter to skip or jumper the input.

Thermocouple Connections

Connect the positive lead of the thermocouple to the IN+ terminal for one of the loops, and connect the negative lead to the corresponding IN- terminal.

Use 18 or 20 AWG (0.5 or 0.75 mm²) for all thermocouple inputs. Most thermocouple wire is solid, unshielded wire. When using shielded wire, ground one end only.
CAUTION! Ground loops and common mode noise can damage the controller or disrupt measurements. To minimize ground loops and common mode noise:

- Do not mix grounded and ungrounded thermocouples. If any thermocouple connected to the controller is of grounded construction, all thermocouples should be of grounded construction and each should be connected to ground at the process end.
- Connect the earth ground terminal on TB2 to a good earth ground, but do not connect the analog common to earth ground. The D8 uses a floating analog common for sensor measurements. The noise protection circuits on the sensor inputs function correctly only if the controller is correctly installed. See Ground Loops on page 27.

RTD Input Connections

RTD inputs require accessory resistors. Watlow recommends that you use a 100Ω, three-wire platinum RTD to prevent reading errors due to cable resistance. If you use a two-wire RTD, jumper the negative input to common. If you must use a four-wire RTD, leave the fourth wire unconnected.

Voltage Input Connections

Voltage inputs with ranges greater than -10 to 60mV require accessory resistors. Special input resistors installed at Watlow divide analog input voltages such that the controller sees a -10 to 60mV signal on the loop.
Current Input Connections

Current inputs require accessory resistors. Special input resistors installed at Watlow for analog current signals are such that the controller sees a -10 to 60mV signal across its inputs for the loop.

![Figure 2.17 – Current Signal Connections](image-url)

Wiring Control and Digital I/O

This section describes how to wire and configure the control outputs for the D8 series controller. The D8 provides dual control outputs for each loop. These outputs can be enabled or disabled, and are connected through a TB50 or TB18.

NOTE! Control outputs are connected to controller common when the control output is on. If you connect external devices that may have a low side at a voltage other than controller ground, you may create ground loops. To prevent ground loops, use isolated solid state relays and isolate the control device inputs.

Output Wiring Recommendations

When wiring output devices, use multicolored, stranded, shielded cable for analog outputs and digital outputs connected to panel-mounted solid state relays.

- Analog outputs usually use a twisted pair.
- Digital outputs usually have 9 to 20 conductors, depending on wiring technique.

Cable Tie Wraps

After you wire outputs to the TB50, install the cable tie wraps to reduce strain on the connectors. Each row of terminals has a cable tie wrap hole at one end. Thread the cable tie wrap through the cable tie wrap hole. Then, wrap the cable tie wrap around the wires attached to that terminal block.

Digital Outputs

The D8 provides dual control outputs for up to eight loops. By default, heat outputs are enabled and cool outputs are disabled. If the heat or cool output is disabled for a loop, then the output is available for alarms. The CPU watchdog timer output can be used to monitor the state of the controller. See CPU Watchdog Timer on page 37.

Table 2.5 – Digital Output States and Values Stored in the Controller

<table>
<thead>
<tr>
<th>STATE</th>
<th>VALUE(^1)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>0</td>
<td>Open circuit</td>
</tr>
<tr>
<td>On</td>
<td>1</td>
<td>Sinking current to common</td>
</tr>
</tbody>
</table>

\(^1\) Read and write these values through communications.
All digital outputs sink current to controller common when on. The load may be powered by the 5VDC supplied by the controller at the TB50, or by an external power supply. When using an external power supply, bear in mind:

- Connect the commons of the load supply and the controller power supply together near the power supplies.
- Do not exceed +24 volts.
- If you connect the external load to earth ground, or if you cannot connect it as shown in Figure 2.17, then use a solid state relay.

The outputs conduct current when they are on. The maximum current sink capability is 60mA at 24VDC. The outputs cannot “source” current to a load.

![Diagram of Digital Output Wiring](image)

Figure 2.18 — Digital Output Wiring

Configuring Outputs

As you choose outputs for control and alarms, bear in mind the following points:

- You can enable or disable the control outputs. By default, heat outputs are enabled and cool outputs are disabled.
- You can program each control output individually for on/off, time proportioning, distributed zero-crossing or Serial DAC control.
- You can individually program each control output for direct or reverse action.
- Alarm outputs other than the global alarm are non-latching. See Global Alarm on page 76.
- Alarms can be suppressed during process start up and for preprogrammed durations. See Power Up Alarm Delay on page 103.
- Alarm outputs can be configured, as a group, to sink to output during an alarm or stop current flow during an alarm. See Digital Output Alarm Polarity on page 105.
Control and Alarm Output Connections

Typically control and alarm outputs use external optically-isolated solid state relays (SSRs). SSRs accept a 3 to 32VDC input for control, and some can switch up to 100 Amps at 480VAC. For larger currents, use silicon control rectifier (SCR) power controllers up to 1000 Amps at 120 to 600VAC. You can also use SCRs and a Serial DAC for phase-angle fired control.

The control and alarm outputs are open collector outputs referenced in the D8’s common. Each output sinks up to 60mA DC to the controller common when on.

NOTE! Control outputs are sink outputs. They sink current when the output is on. Connect them to the negative side of solid state relays.

Figure 2.19 shows sample heat, cool and alarm output connections.

CPU Watchdog Timer

The CPU watchdog timer constantly monitors the microprocessor. It is a sink output located on TB50 terminal 6 or TB18 terminal 3. The output can be connected to an external circuit or device to monitor whether the controller is powered and operational. The output is on (low) when the microprocessor is operating; when it stops operating, the output goes off (high).

Figure 2.21 and Figure 2.22 on the following page show the recommended circuit for the watchdog timer output for the TB50 and the TB18.
Digital Inputs
All digital inputs are transistor-transistor logic (TTL) level inputs referenced to controller common and the internal +5V power supply of the D8.

When an input is connected to the controller common, the input is considered on. Otherwise, the input is considered off. Most features that use the digital inputs can be user-configured to activate when an input is either on or off.

In the off state, internal 4.7kΩ resistors pull the digital inputs high to 5VDC with respect to the controller common.

Table 2.6 – Digital Input States and Values Stored in the Controller

<table>
<thead>
<tr>
<th>STATE</th>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>0</td>
<td>Open circuit</td>
</tr>
<tr>
<td>On</td>
<td>1</td>
<td>Digital input connected to controller common</td>
</tr>
</tbody>
</table>

1 Read and write these values through communications.

External Switching Devices
To ensure that the inputs are reliably switched, use a switching device with the appropriate impedances in the on and off states and do not connect the inputs to external power sources.

When off, the switching device must provide an impedance of at least 14kΩ to ensure that the voltage will rise to greater than 3.7VDC. When closed, the switch must provide not more than 1.7kΩ impedance to ensure the voltage drops below 1.3VDC.

To install a switch as a digital input, connect one lead to the common terminal on the TB50 (terminals 3 and 4) or TB18 (terminal 2). Connect the other lead to the desired digital input terminal on the TB50 (terminals 43 to 50) or TB18 (terminals 16 to 18).
Functions Activated by Digital Inputs

Use digital inputs to activate the following functions:

- Load a job that is stored in controller memory. See BCD Job Load on page 100.
- Change all loops to manual mode at specified output levels. See Mode Override on page 102.
- Enable thermocouple short detection. See Thermocouple Short Alarm on page 104.
- Restore automatic control after a failed sensor has been repaired. See Restore Automatic Mode on page 115.

TB18 Connections

Table 2.7 – TB18 Connections

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>FUNCTION</th>
<th>CONTROL OUTPUT¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4-LOOP MODEL</td>
</tr>
<tr>
<td>1</td>
<td>+5VDC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CTRL COM</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Watchdog timer</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Global alarm</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Output 1</td>
<td>Loop 1 heat</td>
</tr>
<tr>
<td>6</td>
<td>Output 2</td>
<td>Loop 2 heat</td>
</tr>
<tr>
<td>7</td>
<td>Output 3</td>
<td>Loop 3 heat</td>
</tr>
<tr>
<td>8</td>
<td>Output 4</td>
<td>Loop 4 heat</td>
</tr>
<tr>
<td>9</td>
<td>Output 5</td>
<td>Loop 1 cool</td>
</tr>
<tr>
<td>10</td>
<td>Output 6</td>
<td>Loop 2 cool</td>
</tr>
<tr>
<td>11</td>
<td>Output 7</td>
<td>Loop 3 cool</td>
</tr>
<tr>
<td>12</td>
<td>Output 8</td>
<td>Loop 4 cool</td>
</tr>
<tr>
<td>13</td>
<td>Output 9</td>
<td>Loop 1 cool</td>
</tr>
<tr>
<td>14</td>
<td>Output 10</td>
<td>Loop 2 cool</td>
</tr>
<tr>
<td>15</td>
<td>Output 18²</td>
<td>Serial DAC clock</td>
</tr>
<tr>
<td>16</td>
<td>Input 1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Input 2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Input 3</td>
<td></td>
</tr>
</tbody>
</table>
The indicated outputs are dedicated for control when enabled in the loop setup. If one or both of the outputs are disabled for a loop, then the corresponding digital outputs become available for alarms.

If you install a Watlow Serial DAC, the D8 series controller uses digital output 18 (terminal 15) for a clock line. You cannot use output 18 for anything else if a Serial DAC is installed.

TB50 Connections

Table 2.8 — TB50 Connections

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>FUNCTION</th>
<th>CONTROL OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5VDC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CTRL COM</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Output 1</td>
<td>Loop 1 heat</td>
</tr>
<tr>
<td>11</td>
<td>Output 2</td>
<td>Loop 2 heat</td>
</tr>
<tr>
<td>13</td>
<td>Output 3</td>
<td>Loop 3 heat</td>
</tr>
<tr>
<td>15</td>
<td>Output 4</td>
<td>Loop 4 heat</td>
</tr>
<tr>
<td>17</td>
<td>Output 5</td>
<td>Loop 5 heat</td>
</tr>
<tr>
<td>19</td>
<td>Output 6</td>
<td>Loop 6 heat</td>
</tr>
<tr>
<td>21</td>
<td>Output 7</td>
<td>Loop 7 heat</td>
</tr>
<tr>
<td>23</td>
<td>Output 8</td>
<td>Loop 8 heat</td>
</tr>
<tr>
<td>25</td>
<td>Output 9</td>
<td>Loop 1 cool</td>
</tr>
<tr>
<td>27</td>
<td>Output 10</td>
<td>Loop 2 cool</td>
</tr>
<tr>
<td>29</td>
<td>Output 11</td>
<td>Loop 3 cool</td>
</tr>
<tr>
<td>31</td>
<td>Output 12</td>
<td>Loop 4 cool</td>
</tr>
<tr>
<td>33</td>
<td>Output 13</td>
<td>Loop 5 cool</td>
</tr>
<tr>
<td>35</td>
<td>Output 14</td>
<td>Loop 6 cool</td>
</tr>
<tr>
<td>37</td>
<td>Output 15</td>
<td>Loop 7 cool</td>
</tr>
<tr>
<td>39</td>
<td>Output 16</td>
<td>Loop 8 cool</td>
</tr>
<tr>
<td>41</td>
<td>Output 17</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Input 1</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Input 3</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Input 5</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Input 7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>FUNCTION</th>
<th>CONTROL OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>+5VDC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CTRL COM</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Watchdog Timer</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Global Alarm</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Output 18(^2)</td>
<td>Serial DAC Clock</td>
</tr>
<tr>
<td>44</td>
<td>Input 2</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Input 4</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Input 6</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Input 8</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) The indicated outputs are dedicated for control when enabled in the loop setup. If one or both of a loop’s outputs are disabled, the corresponding digital outputs become available for alarms.

\(^2\) If you install a Watlow Serial DAC, the D8 uses digital output 18 (terminal 15) for a clock line. You cannot use output 18 for anything else if a Serial DAC is installed.
Analog Outputs

Analog outputs can be provided by using a Dual DAC or Serial DAC module to convert the open collector outputs from the controller. Use multicolored stranded shielded cable for analog outputs. Analog outputs generally use a twisted pair wiring. The following sections describe the Dual DAC and Serial DAC modules.

Wiring the Dual DAC

A Dual DAC module includes two identical circuits. Each can convert a distributed zero cross (DZC) signal from the controller to a voltage or current signal. Watlow strongly recommends using a power supply separate from the controller supply to power the Dual DAC. Using a separate power supply isolates the controller's digital logic circuits and analog measurement circuits from the frequently noisy devices that take the analog signal from the Dual DAC.

Several Dual DAC modules may be powered by one power supply. Consult the Dual DAC's manual for power requirements. Also note in the specifications that the Dual DAC does not carry the same industry approvals as the Serial DAC.

Wiring the Serial DAC

The Serial DAC provides a robust analog output signal. The module converts the proprietary Serial DAC signal from the controller's open collector output in conjunction with the clock signal to an analog current or voltage. The Serial DAC is user-configurable for voltage or current output.

The Serial DAC optically isolates the controller's control output from the load. When a single Serial DAC is used, it may be powered by the 5VDC found on the TB50 or by an external power supply referenced to the controller's power supply. When using multiple Serial DACs, the controller cannot provide sufficient current; use an external power supply.

Connecting the D8 to a DeviceNet Network

Connector Type

Connect the D8 to the DeviceNet™ network using a female, sealed, micro-style, quick disconnect connector with five conductors. The DeviceNet™ connector is in the back of the controller.

![DeviceNet™ Connector](image)
Connector Pinout

![Connector Pinout Diagram](image)

Figure 2.25 – J4 DeviceNet™ Connector Pinout

Table 2.9 – DeviceNet™ Connector

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shield</td>
<td>Shield interconnect</td>
</tr>
<tr>
<td>2</td>
<td>V+</td>
<td>DeviceNet™ power</td>
</tr>
<tr>
<td>3</td>
<td>V-</td>
<td>DeviceNet™ power return</td>
</tr>
<tr>
<td>4</td>
<td>CAN+</td>
<td>Positive side of the DeviceNet™ bus</td>
</tr>
<tr>
<td>5</td>
<td>CAN-</td>
<td>Negative side of the DeviceNet™ bus</td>
</tr>
</tbody>
</table>

Network Length

The network speed is limited by the end-to-end network distance. The longer the network, the slower the baud rate setting must be. See Table 2.10 below.

Table 2.10 – Maximum Network Speed

<table>
<thead>
<tr>
<th>DISTANCE</th>
<th>BAUD RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 m (328 ft)</td>
<td>500 Kbps</td>
</tr>
<tr>
<td>250 m (820 ft)</td>
<td>250 Kbps</td>
</tr>
<tr>
<td>500 m (1,640 ft)</td>
<td>125 Kbps</td>
</tr>
</tbody>
</table>

Baud Rate (Data Rate)

DeviceNet™ communications can use three different baud rates (data rates) 125k, 250k, and 500k baud. When the switch is set to the PGM position, the unit’s baud rate is determined by a software setting. If the switch is set to PGM you must set the data rate using the controller’s front panel or network-configuration software. As long as the switch is set to PGM, the controller will always come back up on the network with the last software-configured baud rate stored in the controller’s memory.

As an example, assume the controller’s baud rate switch is set to PGM, and it is programmed at 500k baud. Assume too, that the DeviceNet™ network experiences a power loss. When power is restored, the controller will come back up with a baud rate of 500k baud. If on the other hand, the
baud rate switch was changed to 250k baud before the network power had been restored, the controller will attempt to come back on the network at 250k baud.

NOTE! When changing the baud rate via the software or by manually changing the switch position, you will need to cycle power on the network for the change to take effect.

Node Address (MAC ID)
Valid node addresses on a DeviceNet™ network range from 0 to 63 decimal. When the switch is set to the PGM position, the unit’s node address is determined by a software setting. If the switch is set to “PGM” you must set the node address using the controller’s front panel or network-configuration software. As long as the switch setting remains set for software selection, the controller will always come back up on the network with the last software configured node address stored in the controller’s memory.

Set the controller’s MAC ID with the two rotary switches on the side of the case. Set the most significant digit (MSD) with the left switch and the least significant digit (LSD) with the right switch. For example, to set the address to 23, set the MSD to 2 and the LSD to 3.

NOTE! If the node address is changed with the switch, the D8 controller’s power must be cycled before the change takes effect. If the node address is changed using software, the change takes effect immediately.

![Figure 2.26 – D8 Side with Rotary Switches](image)

Status Indicators
The D8 controller has two indicator lights on the back, one labeled “NET” (Network) and the other labeled “MOD” (Module). On power-up the controller performs a self-test. The indicator light identified as “MOD” displays the result of this test as either pass (green) or fail (red). Also, under normal operation the indicator lights indicate the health of the module and the network. In the event that an indicator light should go from green to red either on power up or afterwards, consult Table 2.11 and Table 2.12 below for basic troubleshooting.
Table 2.11 – Module Status Indicator Light

<table>
<thead>
<tr>
<th>INDICATOR LIGHT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No power is applied to the device.</td>
</tr>
<tr>
<td>Flashing Green-Red</td>
<td>The device is performing a Self-Test.</td>
</tr>
<tr>
<td>Green</td>
<td>The device is operating normally.</td>
</tr>
<tr>
<td>Red</td>
<td>The device has detected an unrecoverable fault.</td>
</tr>
</tbody>
</table>

Table 2.12 – Network Status Indicator Light

<table>
<thead>
<tr>
<th>INDICATOR LIGHT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>The device is not online.</td>
</tr>
<tr>
<td></td>
<td>• The device has not completed the duplicate MAC ID test yet.</td>
</tr>
<tr>
<td></td>
<td>• The device may not be powered. Look at Table 2.11 – Module Status Indicator Light.</td>
</tr>
<tr>
<td>Green</td>
<td>The device is online and has connections in the established state.</td>
</tr>
<tr>
<td></td>
<td>• For a Group 2 Only device it means that the device is allocated to a Master.</td>
</tr>
<tr>
<td>Red</td>
<td>Failed communication device.</td>
</tr>
<tr>
<td></td>
<td>• The device has detected an error that has rendered it incapable of</td>
</tr>
<tr>
<td></td>
<td>communicating on the network (Duplicate MAC ID or Bus-off)</td>
</tr>
<tr>
<td>Flashing Green</td>
<td>The device is online, but no connection has been allocated or an explicit</td>
</tr>
<tr>
<td></td>
<td>connection has timed out.</td>
</tr>
<tr>
<td>Flashing Red</td>
<td>A poll connection has timed out.</td>
</tr>
</tbody>
</table>
Chapter 3: Communicating by DeviceNet

This chapter explains how to add a D8 series controller to a DeviceNet™ network and how to access and manipulate the controller’s data over a network using a Programmable Logic Controller or other device with a DeviceNet™ scanner. The chapter also includes descriptions of the D8’s objects and attributes that are accessible via the DeviceNet™ protocol.

Accessing Data with a DeviceNet Master

Figures 3.1 to 3.4 starting on page 51 illustrate the inputs and outputs in the D8 controller’s polled I/O messages. These messages are typically used to get the controller’s data in and out of a master on a DeviceNet™ network.

About The Electronic Data Sheet (EDS)

The EDS file allows for faster and easier configuration with the network software, but it is not required to make the device work. EDS files for the D8 are available on the Watlow web site and upon request from Watlow technical support.

NOTE! There are several versions of the EDS file. You must use the correct file for the number of loops in the controller (d84 <file version>.eds or d88 <file version>.eds) and the version of the DeviceNet™ BIOS. This information is included in the file description on Watlow’s web site.

Setting Parameters via DeviceNet

All values stored in the D8 are bits, integers or strings. Some integers represent settings that appear as text in the controller interface. Some integers represent numeric settings. This section describes how to interpret values found in the DeviceNet™ objects.

Non-Numeric Settings

With the exceptions of the Loop Name and Units parameters, when the controller interface displays the setting as a word—a phrase and in some cases a number—the setting is stored as an integer. See Chapter 6: Menu and Parameter Reference on page 95, for the parameter information. The integer value appears in parentheses following each option. Use that integer value when you set or interpret the value of the parameter via DeviceNet™.
Bit-Wise Values

Some settings, such as those that enable alarms, are stored as bits within words. To examine the value of just one bit, you can “and” the value with a mask word to extract the particular bit in which you are interested. In order to set a bit, perform bit-wise ORing. To clear the bit perform a bit-wise ANDing with the inverse mask word.

Decimal Placement for Numeric Values

Numeric values that are in the loop’s engineering units are stored as integers. The number of decimal places that are implied when a parameter value is stored in the controller depends upon the Input type and Disp format parameter values for the loop. See Table 3.1.

Table 3.1 – Implied Decimals by Input Type and Display Format

<table>
<thead>
<tr>
<th>INPUT TYPE</th>
<th>DISPLAY FORMAT</th>
<th>DECIMAL PLACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any thermocouple</td>
<td>-999 to 3000</td>
<td>1</td>
</tr>
<tr>
<td>RTD</td>
<td>-999.9 to 3000.0</td>
<td>1</td>
</tr>
<tr>
<td>Process</td>
<td>-999 to 3000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-9999 to 30000</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-999.9 to 3000.0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-99.99 to 300.00</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-9.999 to 30.000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>-0.9999 to 3.0000</td>
<td>4</td>
</tr>
</tbody>
</table>

To determine the integer value to set in the controller, move the decimal to the right the number of places specified.

For example:

- If a loop has a process input with a display format of -99.99 to 300.00, values are stored with two decimal places. If you read a value in the set point register of 2500, you should interpret that value as 25.00.
- If a loop has a thermocouple input and you want to set the Alarm High SP parameter to 355 via DeviceNet™, you should set a value of 3550.

Decimal Placement for Percentage Values

Percentage values are stored internally in tenths of a percent, such that 1000 corresponds to 100.0 percent. Divide values by ten when reading, and multiply values by ten before writing.

D8 DeviceNet Overview

The D8 controller is configured as a Group 2 Only Slave device using the Predefined Master/Slave Connection Set.

The D8’s DeviceNet™ interface includes objects in two main categories, DeviceNet™ Objects and Application Objects. DeviceNet™ objects handle what is necessary for networking and communications. Application Objects provide access to the D8 controller’s parameters and data.
Master/Slave Connections

The D8 supports the **Predefined Master/Slave Connection Set**, which calls for the utilization of an Explicit Messaging Connection to manually create and configure Connection Objects within each connection end-point. These Connections are referred to collectively as the **Predefined Master/Slave Connection Set**.

The **master** is the device that gathers and distributes I/O data for the process controller. **Slaves** are the devices from which the master gathers I/O data and to which the master distributes I/O data. The master “owns” the slaves whose node addresses appear in its scan list. To determine which slaves it will communicate with, the master examines its scan list and sends commands accordingly. Except for the Duplicate MAC ID Check, a slave cannot initiate any communication before being told by the master to do so.

Addressing

All data is referenced using a four-part definition: Node (MAC ID) + Class + Instance + Attribute.

Table 3.2 – Address Components

<table>
<thead>
<tr>
<th>ADDRESS COMPONENT</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Address (MAC ID)</td>
<td>[0 to 63]</td>
</tr>
<tr>
<td>Class ID</td>
<td>[1 to 255]</td>
</tr>
<tr>
<td>Instance ID</td>
<td>[0 to 255]</td>
</tr>
<tr>
<td>Attribute ID</td>
<td>[1 to 255]</td>
</tr>
</tbody>
</table>

Data Types

The descriptions of attributes in the following sections include the data type for each. Table 3.3 lists and describes these data types.

Table 3.3 – Elementary Data Types

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOL</td>
<td>Logical Boolean (TRUE or FALSE)</td>
</tr>
<tr>
<td>BYTE</td>
<td>Bit string (8 bits)</td>
</tr>
<tr>
<td>EPATH</td>
<td>DeviceNet™ path segments</td>
</tr>
<tr>
<td>INT</td>
<td>Signed integer (16 bits)</td>
</tr>
<tr>
<td>SHORT_STRING</td>
<td>Character string (1 byte per character, 1 byte length indicator)</td>
</tr>
<tr>
<td>UDINT</td>
<td>Unsigned double integer (32 bits)</td>
</tr>
<tr>
<td>UINT</td>
<td>Unsigned integer (16 bits)</td>
</tr>
<tr>
<td>USINT</td>
<td>Unsigned short integer (8 bits)</td>
</tr>
<tr>
<td>WORD</td>
<td>Bit string (16 bits)</td>
</tr>
</tbody>
</table>
DeviceNet Objects

The following sections describe the standard DeviceNet™ objects and the D8-specific application objects. Tables in each section identify the class, available services, and the object’s class and instance attributes.

Identity Object

The Identity object provides identification information for the device. This includes the device manufacturer, product name, product type, serial number and revision.

<table>
<thead>
<tr>
<th>Class Code</th>
<th>01 hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Services</td>
<td>None</td>
</tr>
<tr>
<td>Instance Services</td>
<td>01 hex Get Attribute All 05 hex Rest (0, 1) 0E hex Get Attribute Single</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1 hex)</td>
<td>Get</td>
<td>VendorID</td>
<td>UINT</td>
<td>Identification of each vendor by number. Watlow has vendor ID 153</td>
</tr>
<tr>
<td>2 (2 hex)</td>
<td>Get</td>
<td>Product Type</td>
<td>UINT</td>
<td>Identification of general type of product for vendor. The D8 has type 0.</td>
</tr>
<tr>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Product Code</td>
<td>UINT</td>
<td>Specific product code: 8-Loop Model (1); 4-Loop Model (2)</td>
</tr>
<tr>
<td>4 (4 hex)</td>
<td>Get</td>
<td>Revision</td>
<td>STRUCT of: 2 USINT</td>
<td>Revision of the item the Identity Object represents</td>
</tr>
<tr>
<td>5 (5 hex)</td>
<td>Get</td>
<td>Status</td>
<td>WORD</td>
<td>Summary status of device</td>
</tr>
<tr>
<td>6 (6 hex)</td>
<td>Get</td>
<td>Serial Number</td>
<td>UDINT</td>
<td>Serial number of device</td>
</tr>
<tr>
<td>7 (7 hex)</td>
<td>Get</td>
<td>Product Name</td>
<td>SHORT_STRING</td>
<td>Human readable ID “WATLOW D88” (8-loop model or “WATLOW D84” 4-loop model)</td>
</tr>
</tbody>
</table>

Message Router Object

The Message Router object provides a messaging connection point through which a client may address a service to any object class or instance residing in the physical device.

<table>
<thead>
<tr>
<th>Class Code</th>
<th>02 hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Services</td>
<td>None</td>
</tr>
<tr>
<td>Instance Services</td>
<td>04 hex Get Attribute Single</td>
</tr>
</tbody>
</table>
Table 3.7 – Message Router Instance Attributes

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (2 hex)</td>
<td>Get</td>
<td>Number Available</td>
<td>UINT</td>
<td>Maximum number of connections supported. The D8 supports up to 3 connections.</td>
</tr>
<tr>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Number Active</td>
<td>UINT</td>
<td>Number of connections currently used by the system components.</td>
</tr>
</tbody>
</table>

DeviceNet Object

The DeviceNet™ object is used to provide the configuration and status of a physical attachment to DeviceNet™.

Table 3.8 – DeviceNet™ Class and Services

<table>
<thead>
<tr>
<th>Class Code</th>
<th>Class Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 hex</td>
<td>0E hex Get Attribute Single</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instance Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 hex Set Attribute Single</td>
</tr>
<tr>
<td>0E hex Get Attribute Single</td>
</tr>
<tr>
<td>08 hex Create</td>
</tr>
<tr>
<td>09 hex Delete</td>
</tr>
</tbody>
</table>

Table 3.9 – DeviceNet™ Class Attributes

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1 hex)</td>
<td>Get</td>
<td>Revision</td>
<td>UINT</td>
<td>Revision of this object</td>
</tr>
</tbody>
</table>

Table 3.10 – DeviceNet™ Instance Attributes

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1 hex)</td>
<td>Get/Set¹</td>
<td>MAC ID</td>
<td>USINT</td>
<td>Node Address (0 to 63)</td>
</tr>
<tr>
<td>2 (2 hex)</td>
<td>Get/Set²</td>
<td>Baud Rate</td>
<td>USINT</td>
<td>Baud Rate (0 to 2)</td>
</tr>
<tr>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Bus-Off Counter</td>
<td>USINT</td>
<td>Number of times CAN went to the bs-o state (0 to 255)</td>
</tr>
<tr>
<td>4 (4 hex)</td>
<td>Get</td>
<td>Allocation Info.</td>
<td>STRUCT of: BYTE USINT</td>
<td>Allocation Information Allocation Choice Byte MAC ID of Master (0 to 63, 255)</td>
</tr>
</tbody>
</table>

¹ If the Node Address (MAC ID) rotary switches are set to a value from 0 to 63, the MAC ID attribute has only Get access. If the rotary switches are set to the programmable mode, the MAC ID attribute has both Get and Set access.

² If the Baud Rate (data rate) rotary switch is set to 125, 250 or 500k baud, the Baud Rate attribute has only Get access. If the rotary switches are set to the software programmable mode, the Baud Rate has both Get and Set access.

Assembly Object

The Assembly object binds attributes of multiple objects, which allows data to or from each object to be sent or received over a single connection.

There are several instances of the Assembly object and each has an attribute 3 with controller parameter values for each loop concatenated. For example, an explicit get of instance 100, attribute 3 to a 4-loop controller returns the four set-point values in one message. This simplifies access to these frequently used parameters.
Table 3.11 – Assembly Class and Services

<table>
<thead>
<tr>
<th>Class Code</th>
<th>04 hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Services</td>
<td>None</td>
</tr>
<tr>
<td>Instance Services</td>
<td>0E hex Get Attribute Single 10 hex Set Attribute Single</td>
</tr>
</tbody>
</table>

Table 3.12 – Assembly Instance Attributes

<table>
<thead>
<tr>
<th>INSTANCE</th>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (64 hex)</td>
<td>3 (3 hex)</td>
<td>Get/Set</td>
<td>Set Points</td>
<td>array¹ of INTs</td>
<td>Set Point of each loop</td>
</tr>
<tr>
<td>101 (65 hex)</td>
<td>3 (3 hex)</td>
<td>Get/Set</td>
<td>Modes</td>
<td>array¹ of USINTs</td>
<td>Mode of each loop</td>
</tr>
<tr>
<td>102 (66 hex)</td>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Process Variables</td>
<td>array¹ of INTs</td>
<td>Process Variable of each loop</td>
</tr>
<tr>
<td>103 (67 hex)</td>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Heat Outputs</td>
<td>array² of UINTs</td>
<td>Heat Output of each loop</td>
</tr>
<tr>
<td>104 (68 hex)</td>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Cool Outputs</td>
<td>array² of UINTs</td>
<td>Cool Output of each loop</td>
</tr>
<tr>
<td>105 (69 hex)</td>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Alarm Status</td>
<td>array² of UINTs</td>
<td>Alarm status of each loop</td>
</tr>
<tr>
<td>106 (6A hex)</td>
<td>3 (3 hex)</td>
<td>Get/Set</td>
<td>Poll Out</td>
<td>array¹ of UINTs + array¹ of USINTs</td>
<td>Consumed Static Output</td>
</tr>
<tr>
<td>107 (6B hex)</td>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Poll In</td>
<td>BYTE + array² of INTs + array² of UINTs</td>
<td>Produced Static Input</td>
</tr>
</tbody>
</table>

¹ Array size is equal to the number of loops in the controller (4 elements for four loops and 8 for eight loops).
² Array size is equal to the two times the number of loops in the controller (8 elements for four loops and 16 for eight loops).
³ Array size is equal to the three times the number of loops in the controller (12 elements for four loops and 24 for eight loops).

Poll Connection

The poll connection allows the master to write all set points and control modes in one connection. It also allows the reading of all process variables, set points, heat and cool outputs, and alarm status for all of the loops.

Table 3.13 lists the sizes of the polled I/O messages. Figure 3.1 to Figure 3.4 illustrate the contents of the polled I/O messages for the four-loop and eight-loop controllers. The Produced Static Input message is produced by the controller as input to the DeviceNet™ bus. The Consumed Static Output message is consumed by the controller.

Table 3.13 – Number of Bytes

<table>
<thead>
<tr>
<th>CONTROLLER</th>
<th>PRODUCED STATIC INPUT</th>
<th>CONSUMED STATIC OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four-loop</td>
<td>41</td>
<td>12</td>
</tr>
<tr>
<td>Eight-loop</td>
<td>81</td>
<td>24</td>
</tr>
</tbody>
</table>
Chapter 3: Communicating by DeviceNet

Figure 3.1 – Four-Loop Produced Static Input

<table>
<thead>
<tr>
<th>Loop 1 Process Variable (INT 2 bytes)</th>
<th>Loop 2 Process Variable (INT 2 bytes)</th>
<th>Loop 3 Process Variable (INT 2 bytes)</th>
<th>Loop 4 Process Variable (INT 2 bytes)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Loop 1 Set Point (INT 2 bytes)</th>
<th>Loop 2 Set Point (INT 2 bytes)</th>
<th>Loop 3 Set Point (INT 2 bytes)</th>
<th>Loop 4 Set Point (INT 2 bytes)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Loop 1 Heat Output (UINT 2 bytes)</th>
<th>Loop 2 Heat Output (UINT 2 bytes)</th>
<th>Loop 3 Heat Output (UINT 2 bytes)</th>
<th>Loop 4 Heat Output (UINT 2 bytes)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Loop 1 Cool Output (UINT 2 bytes)</th>
<th>Loop 2 Cool Output (UINT 2 bytes)</th>
<th>Loop 3 Cool Output (UINT 2 bytes)</th>
<th>Loop 4 Cool Output (UINT 2 bytes)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Loop 1 Alarm Status (UINT 2 bytes)</th>
<th>Loop 2 Alarm Status (UINT 2 bytes)</th>
<th>Loop 3 Alarm Status (UINT 2 bytes)</th>
<th>Loop 4 Alarm Status (UINT 2 bytes)</th>
</tr>
</thead>
</table>

Figure 3.2 – Four-Loop Consumed Static Output

<table>
<thead>
<tr>
<th>Loop 1 Set Point (INT 2 bytes)</th>
<th>Loop 2 Set Point (INT 2 bytes)</th>
<th>Loop 3 Set Point (INT 2 bytes)</th>
<th>Loop 4 Set Point (INT 2 bytes)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Loop 1 Control Mode (USINT 1 byte)</th>
<th>Loop 2 Control Mode (USINT 1 byte)</th>
<th>Loop 3 Control Mode (USINT 1 byte)</th>
<th>Loop 4 Control Mode (USINT 1 byte)</th>
</tr>
</thead>
</table>

Figure 3.3 – Eight-Loop Produced Static Input

<table>
<thead>
<tr>
<th>Loop 5 Process Variable (INT 2 bytes)</th>
<th>Loop 6 Process Variable (INT 2 bytes)</th>
<th>Loop 7 Process Variable (INT 2 bytes)</th>
<th>Loop 8 Process Variable (INT 2 bytes)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Loop 5 Set Point (INT 2 bytes)</th>
<th>Loop 6 Set Point (INT 2 bytes)</th>
<th>Loop 7 Set Point (INT 2 bytes)</th>
<th>Loop 8 Set Point (INT 2 bytes)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Loop 5 Heat Output (UINT 2 bytes)</th>
<th>Loop 6 Heat Output (UINT 2 bytes)</th>
<th>Loop 7 Heat Output (UINT 2 bytes)</th>
<th>Loop 8 Heat Output (UINT 2 bytes)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Loop 5 Cool Output (UINT 2 bytes)</th>
<th>Loop 6 Cool Output (UINT 2 bytes)</th>
<th>Loop 7 Cool Output (UINT 2 bytes)</th>
<th>Loop 8 Cool Output (UINT 2 bytes)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Loop 5 Alarm Status (UINT 2 bytes)</th>
<th>Loop 6 Alarm Status (UINT 2 bytes)</th>
<th>Loop 7 Alarm Status (UINT 2 bytes)</th>
<th>Loop 8 Alarm Status (UINT 2 bytes)</th>
</tr>
</thead>
</table>
Connection Object

The Connection Object allocates and manages the internal resources associated with both polled I/O and explicit messaging connections. The specific instance generated by the Connection Class is referred to as a Connection Instance or a Connection Object.

Table 3.14 – Connection Class and Services

<table>
<thead>
<tr>
<th>Class Code</th>
<th>Class Services</th>
<th>Instance Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 hex</td>
<td>None</td>
<td>0E hex Get Attribute Single 10 hex Set Attribute Single</td>
</tr>
</tbody>
</table>

Table 3.15 – Connection Instance Attributes

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1 hex)</td>
<td>Get</td>
<td>State</td>
<td>USINT</td>
<td>State of the object</td>
</tr>
<tr>
<td>2 (2 hex)</td>
<td>Get</td>
<td>Instance Type</td>
<td>USINT</td>
<td>Indicates either I/O or Messaging</td>
</tr>
<tr>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Transport Class Trigger</td>
<td>BYTE</td>
<td>Defines behavior of the Connection</td>
</tr>
<tr>
<td>4 (4 hex)</td>
<td>Get</td>
<td>Produced Connection ID</td>
<td>UINT</td>
<td>Placed in CAN Identifier Field when the Connection transmits</td>
</tr>
<tr>
<td>5 (5 hex)</td>
<td>Get</td>
<td>Consumed Connection ID</td>
<td>UINT</td>
<td>CAN Identifier Field value that denotes message to be received</td>
</tr>
<tr>
<td>6 (6 hex)</td>
<td>Get</td>
<td>Initial Comm Characteristics</td>
<td>BYTE</td>
<td>Defines the Message Group(s) across which productions and consumption associated with this Connection when it occurs</td>
</tr>
<tr>
<td>7 (7 hex)</td>
<td>Get</td>
<td>Produce Connection Size</td>
<td>UINT</td>
<td>Maximum number of bytes transmitted across this Connection</td>
</tr>
<tr>
<td>8 (8 hex)</td>
<td>Get</td>
<td>Consumed Connection Size</td>
<td>UINT</td>
<td>Maximum number of bytes received across this Connection</td>
</tr>
<tr>
<td>9 (9 hex)</td>
<td>Get/Set</td>
<td>Expected Packet Rate</td>
<td>UINT</td>
<td>Defines timing associated with this Connection</td>
</tr>
<tr>
<td>12 (C hex)</td>
<td>Get/Set</td>
<td>Watchdog Timeout Action</td>
<td>USINT</td>
<td>Defines how to handle inactivity or watchdog timeouts; Auto Delete (1), Deferred Delete (3)</td>
</tr>
<tr>
<td>13 (D hex)</td>
<td>Get</td>
<td>Produced Connection Path Length</td>
<td>UINT</td>
<td>Number of bytes in the Produced Connection Path Attribute</td>
</tr>
<tr>
<td>ATTRIBUTE</td>
<td>ACCESS</td>
<td>NAME</td>
<td>TYPE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>14 (E hex)</td>
<td>Get</td>
<td>Produced Connection Path</td>
<td>EPATH</td>
<td>Specifies the Application Object(s) whose data is to be produced by this Connection Object.</td>
</tr>
<tr>
<td>15 (F hex)</td>
<td>Get</td>
<td>Consumed Connection Path Length</td>
<td>UINT</td>
<td>Number of bytes in the Consumed Connection Path Length</td>
</tr>
<tr>
<td>16 (10 hex)</td>
<td>Get</td>
<td>Consumed Connection Path</td>
<td>EPATH</td>
<td>Specifies the Application Object(s) that are to receive data consumed by this Connection Object.</td>
</tr>
</tbody>
</table>

Input Object

The Input Object provides read/write access to all input parameters. Instance 0 of this object contains the class attributes listed in Table 3.17. The four-loop controller has four additional instances, and the eight-loop controller has eight additional instances, each containing the attributes listed in Table 3.18. Instance 1 corresponds to loop 1, instance 2 corresponds to loop 2, and so on.

Table 3.16 – Input Class and Services

<table>
<thead>
<tr>
<th>Class Code</th>
<th>64 hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Services</td>
<td>0E hex Get Attribute Single</td>
</tr>
<tr>
<td>Instance Services</td>
<td>0E hex Get Attribute Single 10 hex Set Attribute Single</td>
</tr>
</tbody>
</table>

Table 3.17 – Input Class Attributes (Instance 0)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1 hex)</td>
<td>Get</td>
<td>Revision</td>
<td>UINT</td>
<td>Revision of this object</td>
</tr>
<tr>
<td>2 (2 hex)</td>
<td>Get</td>
<td>Max instance</td>
<td>UINT</td>
<td>Maximum instances of this object (8)</td>
</tr>
<tr>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Number of instances</td>
<td>UINT</td>
<td>Number of object instances</td>
</tr>
</tbody>
</table>

Table 3.18 – Input Instance Attributes (Instances 1 to 4 or 8)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (64 hex)</td>
<td>Get/Set</td>
<td>Set Point</td>
<td>INT</td>
<td>See page 95.</td>
</tr>
<tr>
<td>102 (66 hex)</td>
<td>Get/Set</td>
<td>Input Type</td>
<td>SHORT_STRING</td>
<td>See page 107.</td>
</tr>
<tr>
<td>103 (67 hex)</td>
<td>Get/Set</td>
<td>Loop Name</td>
<td>SHORT_STRING</td>
<td>See page 108.</td>
</tr>
<tr>
<td>104 (68 hex)</td>
<td>Get/Set</td>
<td>Input Units</td>
<td>Array of 3 USINT</td>
<td>See page 108.</td>
</tr>
<tr>
<td>107 (6B hex)</td>
<td>Get/Set</td>
<td>Display Format</td>
<td>USINT</td>
<td>See page 110.</td>
</tr>
<tr>
<td>108 (6C hex)</td>
<td>Get/Set</td>
<td>Input Range High</td>
<td>INT</td>
<td>See page 110.</td>
</tr>
<tr>
<td>109 (6D hex)</td>
<td>Get/Set</td>
<td>Input Range Low</td>
<td>INT</td>
<td>See page 111.</td>
</tr>
<tr>
<td>110 (6E hex)</td>
<td>Get/Set</td>
<td>Input High Signal</td>
<td>INT</td>
<td>See page 111.</td>
</tr>
<tr>
<td>111 (6F hex)</td>
<td>Get/Set</td>
<td>Input Low Signal</td>
<td>INT</td>
<td>See page 111.</td>
</tr>
<tr>
<td>112 (70 hex)</td>
<td>Get/Set</td>
<td>Input Filter</td>
<td>USINT</td>
<td>See page 112.</td>
</tr>
</tbody>
</table>
NOTE! All successful explicit message responses from a Set service will contain no data. The response will be a two-byte message containing the requester's node address and service code (with R/R bit set).

Output Object

The Output Object provides read/write access to all output parameters. Instance 0 of this object contains the class attributes listed in Table 3.20. The four-loop controller has four additional instances, and the eight-loop controller has eight additional instances, each containing the attributes listed in Table 3.21. Instance 1 corresponds to loop 1, instance 2 corresponds to loop 2, and so on.

Table 3.19 – Output Class and Services

<table>
<thead>
<tr>
<th>Class Code</th>
<th>Class Services</th>
<th>Instance Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 hex</td>
<td>0E hex Get Attribute Single</td>
<td>0E hex Get Attribute Single 10 hex Set Attribute Single</td>
</tr>
</tbody>
</table>

Table 3.20 – Output Class Attributes (Instance 0)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1 hex)</td>
<td>Get</td>
<td>Revision</td>
<td>UINT</td>
<td>Revision of this object</td>
</tr>
<tr>
<td>2 (2 hex)</td>
<td>Get</td>
<td>Max instance</td>
<td>UINT</td>
<td>Maximum instances of this object (8)</td>
</tr>
<tr>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Number of instances</td>
<td>UINT</td>
<td>Number of object instances</td>
</tr>
</tbody>
</table>

Table 3.21 – Output Instance Attributes (Instances 1 to 4 or 8)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (64 hex)</td>
<td>Get/Set</td>
<td>Heat Output</td>
<td>UINT</td>
<td>See page 96.</td>
</tr>
<tr>
<td>101 (65 hex)</td>
<td>Get/Set</td>
<td>Cool Output</td>
<td>UINT</td>
<td>See page 96.</td>
</tr>
<tr>
<td>102 (66 hex)</td>
<td>Get/Set</td>
<td>Heat Output Type</td>
<td>USINT</td>
<td>See page 116.</td>
</tr>
<tr>
<td>103 (67 hex)</td>
<td>Get/Set</td>
<td>Cool Output Type</td>
<td>USINT</td>
<td>See page 116.</td>
</tr>
<tr>
<td>104 (68 hex)</td>
<td>Get/Set</td>
<td>Heat Action</td>
<td>BOOL</td>
<td>See page 118.</td>
</tr>
<tr>
<td>105 (69 hex)</td>
<td>Get/Set</td>
<td>Cool Action</td>
<td>BOOL</td>
<td>See page 118.</td>
</tr>
<tr>
<td>107 (6B hex)</td>
<td>Get/Set</td>
<td>Cool Cycle Time</td>
<td>USINT</td>
<td>See page 117.</td>
</tr>
<tr>
<td>109 (6D hex)</td>
<td>Get/Set</td>
<td>Cool Power Limit</td>
<td>UINT</td>
<td>See page 118.</td>
</tr>
<tr>
<td>112 (70 hex)</td>
<td>Get/Set</td>
<td>Sensor Fail Heat Output</td>
<td>UINT</td>
<td>See page 119.</td>
</tr>
<tr>
<td>113 (71 hex)</td>
<td>Get/Set</td>
<td>Sensor Fail Cool Output</td>
<td>UINT</td>
<td>See page 119.</td>
</tr>
<tr>
<td>114 (72 hex)</td>
<td>Get/Set</td>
<td>Open Thermocouple Heat Output Average</td>
<td>BOOL</td>
<td>See page 120.</td>
</tr>
<tr>
<td>115 (73 hex)</td>
<td>Get/Set</td>
<td>Open Thermocouple Cool Output Average</td>
<td>BOOL</td>
<td>See page 120.</td>
</tr>
<tr>
<td>116 (74 hex)</td>
<td>Get/Set</td>
<td>Heat Output Curve</td>
<td>USINT</td>
<td>See page 120.</td>
</tr>
<tr>
<td>117 (75 hex)</td>
<td>Get/Set</td>
<td>Cool Output Curve</td>
<td>USINT</td>
<td>See page 120.</td>
</tr>
</tbody>
</table>
Table 3.22 – Control Class and Services

<table>
<thead>
<tr>
<th>Class Code</th>
<th>66 hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Services</td>
<td>0E hex Get Attribute Single</td>
</tr>
<tr>
<td>Instance Services</td>
<td>0E hex Get Attribute Single 10 hex Set Attribute Single</td>
</tr>
</tbody>
</table>

Table 3.23 – Control Class Attributes (Instance 0)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1 hex)</td>
<td>Get</td>
<td>Revision</td>
<td>UINT</td>
<td>Revision of this object</td>
</tr>
<tr>
<td>2 (2 hex)</td>
<td>Get</td>
<td>Max instance</td>
<td>UINT</td>
<td>Maximum instances of this object (8)</td>
</tr>
<tr>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Number of instances</td>
<td>UINT</td>
<td>Number of object instances</td>
</tr>
</tbody>
</table>

Table 3.24 – Control Instance Attributes (Instances 1 to 4 or 8)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (64 hex)</td>
<td>Get/Set</td>
<td>Heat Proportional Band</td>
<td>UINT</td>
<td>See page 113.</td>
</tr>
<tr>
<td>101 (65 hex)</td>
<td>Get/Set</td>
<td>Cool Proportional Band</td>
<td>UINT</td>
<td>See page 113.</td>
</tr>
<tr>
<td>102 (66 hex)</td>
<td>Get/Set</td>
<td>Heat Integral</td>
<td>UINT</td>
<td>See page 113.</td>
</tr>
<tr>
<td>103 (67 hex)</td>
<td>Get/Set</td>
<td>Cool Integral</td>
<td>UINT</td>
<td>See page 113.</td>
</tr>
<tr>
<td>104 (68 hex)</td>
<td>Get/Set</td>
<td>Heat Derivative</td>
<td>USINT</td>
<td>See page 114.</td>
</tr>
<tr>
<td>105 (69 hex)</td>
<td>Get/Set</td>
<td>Cool Derivative</td>
<td>USINT</td>
<td>See page 114.</td>
</tr>
</tbody>
</table>

NOTE! All successful explicit message responses from a Set service will contain no data. The response will be a two-byte message containing the requester’s node address and service code (with R/R bit set).
<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>109 (6D hex)</td>
<td>Get/Set</td>
<td>Cool Filter</td>
<td>USINT</td>
<td>See page 114.</td>
</tr>
<tr>
<td>110 (6E hex)</td>
<td>Get/Set</td>
<td>Hysteresis</td>
<td>UINT</td>
<td>See page 115.</td>
</tr>
<tr>
<td>111 (6F hex)</td>
<td>Get/Set</td>
<td>Restore Automatic Mode</td>
<td>USINT</td>
<td>See page 115.</td>
</tr>
<tr>
<td>112 (70 hex)</td>
<td>Get/Set</td>
<td>Mode</td>
<td>USINT</td>
<td>See page 96.</td>
</tr>
</tbody>
</table>

NOTE! All successful explicit message responses from a Set service will contain no data. The response will be a two-byte message containing the requester’s node address and service code (with R/R bit set).

Alarm Object

The Alarm Object provides read/write access to all alarm parameters. Instance 0 of this object contains the class attributes listed in Table 3.26. The four-loop controller has four additional instances, and the eight-loop controller has eight additional instances, each containing the attributes listed in Table 3.27. Instance 1 corresponds to loop 1, instance 2 corresponds to loop 2, and so on.

Table 3.25 – Alarm Class and Services

<table>
<thead>
<tr>
<th>Class Code</th>
<th>67 hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Services</td>
<td>0E hex Get Attribute Single</td>
</tr>
<tr>
<td>Instance Services</td>
<td>0E hex Get Attribute Single 10 hex Set Attribute Single</td>
</tr>
</tbody>
</table>

Table 3.26 – Alarm Class Attributes (Instance 0)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1 hex)</td>
<td>Get</td>
<td>Revision</td>
<td>UINT</td>
<td>Revision of this object</td>
</tr>
<tr>
<td>2 (2 hex)</td>
<td>Get</td>
<td>Max instance</td>
<td>UINT</td>
<td>Maximum instances of this object (8)</td>
</tr>
<tr>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Number of instances</td>
<td>UINT</td>
<td>Number of object instances</td>
</tr>
</tbody>
</table>

Table 3.27 – Alarm Instance Attributes (Instances 1 to 4 or 8)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (64 hex)</td>
<td>Get/Set</td>
<td>Alarm High Set Point</td>
<td>INT</td>
<td>See page 121.</td>
</tr>
<tr>
<td>101 (65 hex)</td>
<td>Get/Set</td>
<td>Alarm Low Set Point</td>
<td>INT</td>
<td>See page 124.</td>
</tr>
<tr>
<td>102 (66 hex)</td>
<td>Get/Set</td>
<td>High Deviation Value</td>
<td>UINT</td>
<td>See page 122.</td>
</tr>
<tr>
<td>103 (67 hex)</td>
<td>Get/Set</td>
<td>Low Deviation Value</td>
<td>UINT</td>
<td>See page 123.</td>
</tr>
<tr>
<td>104 (68 hex)</td>
<td>Get/Set</td>
<td>Alarm Hysteresis</td>
<td>UINT</td>
<td>See page 125.</td>
</tr>
<tr>
<td>105 (69 hex)</td>
<td>Get/Set</td>
<td>Alarm High Output</td>
<td>USINT</td>
<td>See page 122.</td>
</tr>
<tr>
<td>106 (6A hex)</td>
<td>Get/Set</td>
<td>Alarm Low Output</td>
<td>USINT</td>
<td>See page 125.</td>
</tr>
<tr>
<td>107 (6B hex)</td>
<td>Get/Set</td>
<td>High Deviation Output</td>
<td>USINT</td>
<td>See page 123.</td>
</tr>
<tr>
<td>108 (6C hex)</td>
<td>Get/Set</td>
<td>Low Deviation Output</td>
<td>USINT</td>
<td>See page 124.</td>
</tr>
<tr>
<td>109 (6D hex)</td>
<td>Get/Set</td>
<td>Alarm Delay</td>
<td>UINT</td>
<td>See page 126.</td>
</tr>
<tr>
<td>110 (6E hex)</td>
<td>Get</td>
<td>Alarm Status</td>
<td>UINT</td>
<td>See page 134.</td>
</tr>
</tbody>
</table>
Table 3.28 – PV Retransmit Class and Services

<table>
<thead>
<tr>
<th>Class Code</th>
<th>68 hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Services</td>
<td>0E hex Get Attribute Single</td>
</tr>
<tr>
<td>Instance Services</td>
<td>0E hex Get Attribute Single 10 hex Set Attribute Single</td>
</tr>
</tbody>
</table>

Table 3.29 – PV Retransmit Class Attributes (Instance 0)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1 hex)</td>
<td>Get</td>
<td>Revision</td>
<td>UINT</td>
<td>Revision of this object</td>
</tr>
<tr>
<td>2 (2 hex)</td>
<td>Get</td>
<td>Max instance</td>
<td>UINT</td>
<td>Maximum instances of this object (8)</td>
</tr>
<tr>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Number of instances</td>
<td>UINT</td>
<td>Number of object instances</td>
</tr>
</tbody>
</table>

Table 3.30 – PV Retransmit Instance Attributes (Instances 1 to 4 or 8)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (64 hex)</td>
<td>Get/Set</td>
<td>Heat Output Retransmit</td>
<td>USINT</td>
<td>See page 127.</td>
</tr>
<tr>
<td>101 (65 hex)</td>
<td>Get/Set</td>
<td>Cool Output Retransmit</td>
<td>USINT</td>
<td>See page 127.</td>
</tr>
<tr>
<td>103 (67 hex)</td>
<td>Get/Set</td>
<td>Cool Retransmit Low Process Variable</td>
<td>INT</td>
<td>See page 127.</td>
</tr>
</tbody>
</table>

NOTE! All successful explicit message responses from a Set service will contain no data. The response will be a two-byte message containing the requester’s node address and service code (with R/R bit set).
Ratio Object

The Ratio Object provides read/write access to all ratio parameters. Instance 0 of this object contains the class attributes listed in Table 3.32. The four-loop controller has four additional instances, and the eight-loop controller has eight additional instances, each containing the attributes listed in Table 3.33. Instance 1 corresponds to loop 1, instance 2 corresponds to loop 2, and so on.

Table 3.31 – Ratio Class and Services

<table>
<thead>
<tr>
<th>Class Code</th>
<th>69 hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Services</td>
<td>0E hex Get Attribute Single</td>
</tr>
<tr>
<td>Instance Services</td>
<td>0E hex Get Attribute Single 10 hex Set Attribute Single</td>
</tr>
</tbody>
</table>

Table 3.32 – Ratio Class Attributes (Instance 0)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1 hex)</td>
<td>Get</td>
<td>Revision</td>
<td>UINT</td>
<td>Revision of this object</td>
</tr>
<tr>
<td>2 (2 hex)</td>
<td>Get</td>
<td>Max instance</td>
<td>UINT</td>
<td>Maximum instances of this object (8)</td>
</tr>
<tr>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Number of instances</td>
<td>UINT</td>
<td>Number of object instances</td>
</tr>
</tbody>
</table>

Table 3.33 – Ratio Instance Attributes (Instances 1 to 4 or 8)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (64 hex)</td>
<td>Get/Set</td>
<td>Ratio Master Loop</td>
<td>USINT</td>
<td>See page 129.</td>
</tr>
<tr>
<td>101 (65 hex)</td>
<td>Get/Set</td>
<td>Ratio Low Set Point</td>
<td>INT</td>
<td>See page 130.</td>
</tr>
<tr>
<td>102 (66 hex)</td>
<td>Get/Set</td>
<td>Ratio High Set Point</td>
<td>INT</td>
<td>See page 130.</td>
</tr>
<tr>
<td>103 (67 hex)</td>
<td>Get/Set</td>
<td>Control Ratio</td>
<td>UINT</td>
<td>See page 130.</td>
</tr>
<tr>
<td>104 (68 hex)</td>
<td>Get/Set</td>
<td>Ratio Set Point Differential</td>
<td>INT</td>
<td>See page 131.</td>
</tr>
</tbody>
</table>

NOTE! All successful explicit message responses from a Set service will contain no data. The response will be a two-byte message containing the requester's node address and service code (with R/R bit set).

Cascade Object

The Cascade Object provides read/write access to all cascade parameters. Instance 0 of this object contains the class attributes listed in Table 3.35. The four-loop controller has four additional instances, and the eight-loop controller has eight additional instances, each containing the attributes listed in Table 3.36. Instance 1 corresponds to loop 1, instance 2 corresponds to loop 2, and so on.

Table 3.34 – Cascade Class and Services

<table>
<thead>
<tr>
<th>Class Code</th>
<th>6A hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Services</td>
<td>0E hex Get Attribute Single</td>
</tr>
<tr>
<td>Instance Services</td>
<td>0E hex Get Attribute Single 10 hex Set Attribute Single</td>
</tr>
</tbody>
</table>
Table 3.35 – Cascade Class Attributes (Instance 0)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1 hex)</td>
<td>Get</td>
<td>Revision</td>
<td>UINT</td>
<td>Revision of this object</td>
</tr>
<tr>
<td>2 (2 hex)</td>
<td>Get</td>
<td>Max instance</td>
<td>UINT</td>
<td>Maximum instances of this object (8)</td>
</tr>
<tr>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Number of instances</td>
<td>UINT</td>
<td>Number of object instances</td>
</tr>
</tbody>
</table>

Table 3.36 – Cascade Instance Attributes (Instances 1 to 4 or 8)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (64 hex)</td>
<td>Get/Set</td>
<td>Cascade Primary Loop</td>
<td>USINT</td>
<td>See page 128.</td>
</tr>
<tr>
<td>101 (65 hex)</td>
<td>Get/Set</td>
<td>Cascade Low Set Point</td>
<td>INT</td>
<td>See page 128.</td>
</tr>
<tr>
<td>102 (66 hex)</td>
<td>Get/Set</td>
<td>Cascade High Set Point</td>
<td>INT</td>
<td>See page 129.</td>
</tr>
</tbody>
</table>

NOTE! All successful explicit message responses from a Set service will contain no data. The response will be a two-byte message containing the requester’s node address and service code (with R/R bit set).

Global Object

The Global Object provides read/write access to all global parameters. Instance 0 contains the class attributes listed in Table 3.38. Instance 1 contains the attributes listed in Table 3.39.

Table 3.37 – Global Class and Services

<table>
<thead>
<tr>
<th>Class Code</th>
<th>Class Services</th>
<th>Instance Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>6B hex</td>
<td>0E hex Get Attribute Single</td>
<td>0E hex Get Attribute Single 10 hex Set Attribute Single</td>
</tr>
</tbody>
</table>

Table 3.38 – Global Class Attributes (Instance 0)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1 hex)</td>
<td>Get</td>
<td>Revision</td>
<td>UINT</td>
<td>Revision of this object</td>
</tr>
<tr>
<td>2 (2 hex)</td>
<td>Get</td>
<td>Max instance</td>
<td>UINT</td>
<td>Maximum instances of this object (1)</td>
</tr>
<tr>
<td>3 (3 hex)</td>
<td>Get</td>
<td>Number of instances</td>
<td>UINT</td>
<td>Number of object instances (1)</td>
</tr>
</tbody>
</table>

Table 3.39 – Global Instance Attributes (Instance 1)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ACCESS</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (64 hex)</td>
<td>Get/Set</td>
<td>Load Setup From Job</td>
<td>USINT</td>
<td>See page 99.</td>
</tr>
<tr>
<td>101 (65 hex)</td>
<td>Get/Set</td>
<td>Save Setup As Job</td>
<td>USINT</td>
<td>See page 100.</td>
</tr>
<tr>
<td>102 (66 hex)</td>
<td>Get/Set</td>
<td>BCD Job Load</td>
<td>USINT</td>
<td>See page 100.</td>
</tr>
<tr>
<td>103 (67 hex)</td>
<td>Get/Set</td>
<td>BCD Job Load Logic</td>
<td>BOOL</td>
<td>See page 101.</td>
</tr>
<tr>
<td>104 (68 hex)</td>
<td>Get/Set</td>
<td>Mode Override</td>
<td>USINT</td>
<td>See page 102.</td>
</tr>
<tr>
<td>105 (69 hex)</td>
<td>Get/Set</td>
<td>Mode Override Digital Input Active</td>
<td>BOOL</td>
<td>See page 102.</td>
</tr>
<tr>
<td>ATTRIBUTE</td>
<td>ACCESS</td>
<td>NAME</td>
<td>TYPE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>------</td>
<td>----------------------</td>
</tr>
<tr>
<td>106 (6A hex)</td>
<td>Get/Set</td>
<td>Power Up Alarm Delay</td>
<td>USINT</td>
<td>See page 103.</td>
</tr>
<tr>
<td>107 (6B hex)</td>
<td>Get/Set</td>
<td>Power Up Loop Mode</td>
<td>BOOL</td>
<td>See page 103.</td>
</tr>
<tr>
<td>108 (6C hex)</td>
<td>Get/Set</td>
<td>Keypad Lock</td>
<td>BOOL</td>
<td>See page 104.</td>
</tr>
<tr>
<td>109 (6D hex)</td>
<td>Get/Set</td>
<td>Thermocouple Short Alarm</td>
<td>USINT</td>
<td>See page 104.</td>
</tr>
<tr>
<td>110 (6E hex)</td>
<td>Get/Set</td>
<td>AC Line Frequency</td>
<td>BOOL</td>
<td>See page 104.</td>
</tr>
<tr>
<td>111 (6F hex)</td>
<td>Get/Set</td>
<td>Digital Output Alarm Polarity</td>
<td>BOOL</td>
<td>See page 105.</td>
</tr>
<tr>
<td>112 (70 hex)</td>
<td>Get</td>
<td>Digital Inputs 1 (LSB) to 8 (MSB)*</td>
<td>USINT</td>
<td>See page 131.</td>
</tr>
<tr>
<td>113 (71 hex)</td>
<td>Get/Set</td>
<td>Digital Outputs 1 (LSB) to 8 (MSB)</td>
<td>USINT</td>
<td>See page 132.</td>
</tr>
<tr>
<td>114 (72 hex)</td>
<td>Get/Set</td>
<td>Digital Outputs 9 (LSB) to 16 (MSB)</td>
<td>USINT</td>
<td>See page 132.</td>
</tr>
<tr>
<td>115 (73 hex)</td>
<td>Get/Set</td>
<td>Digital Outputs 17 (LSB) and 18 and Global Alarm (MSB)**</td>
<td>USINT</td>
<td>See page 132.</td>
</tr>
<tr>
<td>116 (74 hex)</td>
<td>Get</td>
<td>Ambient Sensor</td>
<td>INT</td>
<td>See page 134.</td>
</tr>
<tr>
<td>117 (75 hex)</td>
<td>Get</td>
<td>Battery Status</td>
<td>BOOL</td>
<td>OK = 0; Fault = 1</td>
</tr>
<tr>
<td>118 (76 hex)</td>
<td>Get</td>
<td>HW Ambient Status</td>
<td>BOOL</td>
<td>OK = 0; Fault = 1</td>
</tr>
<tr>
<td>119 (77 hex)</td>
<td>Get</td>
<td>HW Offset Status</td>
<td>BOOL</td>
<td>OK = 0; Fault = 1</td>
</tr>
<tr>
<td>120 (78 hex)</td>
<td>Get</td>
<td>HW Gain Status</td>
<td>BOOL</td>
<td>OK = 0; Fault = 1</td>
</tr>
</tbody>
</table>

*Least significant bit (LSB) is digital input 1, most significant bit (MSB) is digital input 8.
**Least significant bit (LSB, bit 0) is digital output 17, the next bit is digital output 18, the most significant bit (MSB, bit 7) is the global alarm. The other five bits hold no meaning.

NOTE! All successful explicit message responses from a Set service will contain no data. The response will be a two-byte message containing the requester's node address and service code (with R/R bit set).
Chapter 4: Operation and Setup

This chapter explains how to use the keypad and display to operate the controller. This chapter also explains the basic concepts that you need to understand to set up and operate the controller.

General Navigation Map

The normal display on the D8 is the loop display. Figure 4.1 shows how to navigate from the loop display to other displays, menus and parameters.

Figure 4.1 – General Navigation Map
Keypad

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄</td>
<td>Access the setup menus (press and hold for 3 seconds).</td>
</tr>
<tr>
<td>🔄</td>
<td>Cancel a change without saving.</td>
</tr>
<tr>
<td>🔄</td>
<td>Escape from a parameter to a top-level setup menu.</td>
</tr>
<tr>
<td>🔄</td>
<td>Escape from a setup menu to the loop display or job display.</td>
</tr>
<tr>
<td>🔄</td>
<td>Acknowledge an alarm.</td>
</tr>
<tr>
<td>🔄</td>
<td>Toggle between the loop display and job display (if a job is loaded).</td>
</tr>
<tr>
<td>🔄</td>
<td>Edit a parameter value.</td>
</tr>
<tr>
<td>🔄</td>
<td>Scroll through the top-level setup menus.</td>
</tr>
<tr>
<td>🔄</td>
<td>Toggle between the loop display and job display (if a job is loaded).</td>
</tr>
<tr>
<td>🔄</td>
<td>Edit a parameter value.</td>
</tr>
<tr>
<td>🔄</td>
<td>Scroll through the top-level setup menus.</td>
</tr>
<tr>
<td>🔄</td>
<td>Clear RAM and set all parameters to defaults (hold during power up).</td>
</tr>
<tr>
<td>🔄</td>
<td>Save a change and go to the previous parameter.</td>
</tr>
<tr>
<td>🔄</td>
<td>Access the operator parameters (from the loop display).</td>
</tr>
<tr>
<td>🔄</td>
<td>Save a change and go to the next parameter.</td>
</tr>
<tr>
<td>LOOP</td>
<td>Go to a different loop.</td>
</tr>
<tr>
<td>LOOP</td>
<td>Save a change and go to a different loop, Go to the scanning loop display (hold + for 3 seconds).</td>
</tr>
<tr>
<td>🕵️</td>
<td>Get more information about the current screen.</td>
</tr>
</tbody>
</table>

Figure 4.2 – Keypad Navigation

Displays

Loop Display

The loop display shows detailed information about a loop.

Figure 4.3 – Loop Display
The control modes are described in Table 4.1

Table 4.1 – Control Modes

<table>
<thead>
<tr>
<th>CONTROL MODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>The loop is set to off. One or both outputs are enabled but both outputs are at 0%.</td>
</tr>
<tr>
<td>man</td>
<td>The loop is in manual control. One or both outputs are enabled.</td>
</tr>
<tr>
<td>auto</td>
<td>The loop is in automatic control. Only one output (heat or cool) is enabled.</td>
</tr>
<tr>
<td>heat</td>
<td>The heat and cool outputs are enabled. The loop is in automatic control and heating.</td>
</tr>
<tr>
<td>cool</td>
<td>The heat and cool outputs are enabled. Loop is in automatic control and cooling.</td>
</tr>
<tr>
<td>tun</td>
<td>The loop is in autotune mode.</td>
</tr>
<tr>
<td>(blank)</td>
<td>The heat and cool outputs are both disabled.</td>
</tr>
</tbody>
</table>

NOTE! If the input type for a loop is set to “skip,” the loop display will be blank for that loop.

The scanning loop display sequentially displays the information for each loop. The data for each loop displays for one second. To activate the scanning loop display, go to the loop display, then press and hold the + side of the key for three seconds. To exit the scanning mode, press any key.

Alarm Displays

If an alarm condition occurs, the controller displays an alarm code or alarm message.

Two-Character Alarm Codes

If a process, deviation, ambient warning or failed sensor alarm occurs, a two-character alarm code appears in the lower left corner of the loop display.

The alarm code blinks and you cannot change the display until the alarm has been acknowledged. After the alarm is acknowledged, the alarm code stops blinking. The alarm code remains on the display until the condition that caused the alarm is corrected.

Figure 4.4 – Loop Display with Alarm Code
For more information about alarms, see Setting Up Alarms on page 73 and Process Alarms on page 75.

Failed Sensor Alarm Messages

If the alarm is for a failed sensor, an alarm message appears in the first line of the loop display, as shown in Figure 4.5.

![Alarm Message](image)

Figure 4.5 – Display for Failed Sensor Alarm

Table 4.2 describes the alarm codes and messages for process alarms and failed sensor alarms.

Table 4.2 – Alarm Codes and Messages for Process and Failed Sensor Alarms

<table>
<thead>
<tr>
<th>ALARM CODE</th>
<th>ALARM MESSAGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>(No message)</td>
<td>Alarm high. Alarm High and Alarm Low on page 76</td>
</tr>
<tr>
<td>RL</td>
<td>(No message)</td>
<td>Alarm low. Alarm High and Alarm Low on page 76</td>
</tr>
<tr>
<td>HD</td>
<td>(No message)</td>
<td>High deviation alarm. Deviation Alarms on page 76</td>
</tr>
<tr>
<td>LD</td>
<td>(No message)</td>
<td>Low deviation alarm. Deviation Alarms on page 76</td>
</tr>
<tr>
<td>AW</td>
<td>(No message)</td>
<td>Ambient Warning: The controller is within 5°C of its operating temperature limits. Ambient Warning on page 138</td>
</tr>
<tr>
<td>TO</td>
<td>T/C open</td>
<td>Thermocouple open. Thermocouple Open Alarm on page 74</td>
</tr>
<tr>
<td>TR</td>
<td>T/C reversed</td>
<td>Thermocouple reversed. Thermocouple Reversed Alarm on page 74</td>
</tr>
<tr>
<td>TS</td>
<td>T/C shorted</td>
<td>Thermocouple shorted. Thermocouple Short Alarm on page 74</td>
</tr>
<tr>
<td>RO</td>
<td>RTD open</td>
<td>RTD open. RTD Open and RTD Fail Alarms on page 74</td>
</tr>
<tr>
<td>RF</td>
<td>RTD fail</td>
<td>RTD open or shorted. RTD Open and RTD Fail Alarms on page 74</td>
</tr>
</tbody>
</table>

For details about the condition that causes each alarm, Setting Up Alarms on page 73

How to Acknowledge an Alarm

To acknowledge a process alarm, failed sensor alarm or system alarm, press . If there are other loops with alarm conditions, the alarm display switches to the next loop that has an alarm. Acknowledge all alarms to clear the global alarm digital output.
The keypad and display will not work for anything else until you acknowledge each alarm. The alarm code or message persists as long as the alarm condition exists.

System Alarm Messages

If a system alarm occurs, the alarm message replaces the entire display. The message persists until the condition is corrected and the alarm is acknowledged.

Table 4.3 describes system alarm messages. For more information, Chapter 7: Troubleshooting and Reconfiguring on page 136

<table>
<thead>
<tr>
<th>MESSAGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low power</td>
<td>The power supply has failed. Low Power on page 140</td>
</tr>
<tr>
<td>Battery dead</td>
<td>The RAM battery in the D8 is not functioning correctly, and stored data has been corrupted. Battery Dead on page 140</td>
</tr>
<tr>
<td>H/W error: Ambient</td>
<td>The temperature around the controller is outside of the acceptable range of -5 to 55°C. H/W Error: Ambient on page 141</td>
</tr>
<tr>
<td>H/W error: Gain</td>
<td>Hardware failed because of excessive voltage on inputs. H/W Error: Gain or Offset on page 141</td>
</tr>
<tr>
<td>H/W error: Offset</td>
<td></td>
</tr>
</tbody>
</table>

Job Display

The job display appears if you load a job from memory. If you load a job using the Load setup from job parameter, the job display shows the following screen:

If the job was loaded using digital inputs, the display shows this screen:

If parameters are modified while the job is running, the display shows this screen:

To toggle between the job display and the loop display, press 🔄 or 🅷️.
Changing the Set Point

How to Manually Change the Set Point

Start at the loop display and follow these steps:

1. Press \(\leftarrow \) to choose the appropriate loop.

2. Press \(\rightarrow \). The Set point parameter should appear. If nothing happens, the keypad may be locked; Keypad Lock on page 104. Also, the Set point parameter is not available if cascade control or ratio control is enabled on the loop.

3. Press \(\uparrow \) or \(\downarrow \) to adjust the set point value.

4. Press \(\rightarrow \) to save the value and return to the loop display, or press \(\leftarrow \) to save the value and switch to the set point for another loop, or press \(\times \) to cancel changes.

5. On the loop display, the new set point value is shown on the second line.

![Set Point Display](image)

Other Methods of Changing the Set Point

You can use other methods to change the set point:

- **Cascade Control**: Use the output of one loop to adjust the set point of another loop. Setting Up Cascade Control on page 79
- **Ratio Control**: Use the process variable of one loop, multiplied by a ratio, as the set point of another loop. Setting Up Ratio Control on page 82
- **Differential Control**: Use the process variable of one loop, plus an offset value, as the set point of another loop. Setting Up Differential Control on page 84
- **Remote Analog Set Point**: Use an external device such as a PLC to control the set point. Setting Up Remote Analog Set Point on page 85
- **Communications**: Use a computer program or operator interface panel to change the set point. Chapter 3: Communicating by DeviceNet on page 45

Changing the Control Mode and Output Power

The D8 has four control modes:

- **Off**: Outputs are at 0%.
- **Automatic**: The controller automatically adjusts the output power according to the set point, process variables and other control parameters.
- **Manual**: You set the output power level.
- **Autotune**: The controller calculates the best PID settings for optimum control. For more information, Autotuning on page 72
To change the control mode and output power level, start at the loop display and do the following:

1. Press \(\text{loop} \) to choose the appropriate loop.
2. Press \(\text{mode} \) twice. The \textit{Mode} parameter should appear. (If nothing happens, the keypad may be locked; Keypad Lock on page 104).

3. Press \(\text{mode} \) or \(\text{mode} \) to choose a control mode. If you make a change and want to cancel it, press \(\text{mode} \).
4. Press \(\text{save} \) to save the new value.
5. If you chose manual mode, then the next parameter is the \textit{Heat output} or \textit{Cool output} parameter. Use these parameters to set the heat and cool output power levels, then press \(\text{save} \) to save.
6. You should be back at the loop display. The control mode is shown on the second line of the loop display; Table 4.1 – Control Modes on page 63

Accessing and Navigating the Setup Menus

Use the setup menus to configure the controller. For a list of all setup menus and parameters, Figure 6.2 – Setup Menus and Parameters on page 98

How to Access the Setup Menus

To access the setup menus, press and hold \(\text{menu} \) until the \textit{Global setup} menu appears (about three seconds.)

To prevent unauthorized personnel from accessing setup parameters, the controller reverts to the regular display if you do not press any keys for three minutes.

How to Edit a Setup Parameter

To edit a setup parameter, go to the appropriate setup menu, go to the parameter, then edit the value:

1. Press and hold \(\text{menu} \) for three seconds to access the setup menus.
2. Press \(\text{mode} \) to go to the appropriate menu.
3. If applicable, press \(\text{loop} \) to choose the loop that you want to edit.
4. Press \(\text{save} \) to go to the parameter that you want to edit.
5. To edit a parameter:
 – Press < or > to choose a value.
 – Press < to save the new value and go to the next parameter.
 – Press < to cancel a change without saving.
6. Repeat from step 4 to edit another parameter in the current menu.
7. Press < to return to the top-level menus.
8. Repeat from step 2 to go to another menu, or press < to exit the setup menus.

For information about setting parameters through communications, see Chapter 3: Communicating by DeviceNet on page 45.

Setting Up Closed-Loop Control

Closed-loop control is used to control an output based on feedback from a sensor or other signal.

Feedback
The controller receives electrical signals, or feedback, from a sensor or other device. The input parameters determine how the controller interprets the signal. The controller interprets or scales the input signal in engineering units such as °C or °F.

Control Algorithm
When the controller is in automatic control mode and a set point is supplied, the controller determines the appropriate output signal.

The controller calculates the output signal based on the feedback and the control algorithm. Each loop may use either on/off control or any combination of proportional, integral and derivative (PID) control. Chapter 5: Tuning and Control on page 87 for more information about these control methods.

Control Output Signal Forms
The output level calculated by the controller is represented by a percentage (0 to 100 percent) of power to be applied. That value is applied on a digital or analog output according to the user-selected output type. Heat/Cool Output Type on page 116 for more information about the output types available.

Heat and Cool Outputs
In some applications, two outputs may be controlled according to one input. For example, a loop with both heat and cooling water flow might be controlled according to feedback from one thermocouple.

In such systems, the control algorithm includes provisions to avoid switching too frequently between the heat and cool outputs. The on/off algorithm uses a hysteresis parameter. The PID algorithms use both a hysteresis parameter and the PID parameters to determine when control switches between heating and cooling.
How to Set Up Closed-Loop Control

To set up closed-loop control:

- Use the **Input** menu to specify the type of input signal and, if necessary, how to scale that signal.
- Use the **Control** menu to specify PID parameters and the control hysteresis.
- Use the **Output** menu to enable the heat and cool outputs and to specify other output parameters.
- Provide a set point:
 - To use cascade control to adjust the set point of the loop, set up the **Cascade** menu.
 - To use ratio control, differential control, or remote analog set point, set up the **Ratio** menu.
 - To manually adjust the set point of the loop, use the **Set point** parameter to enter the set point. Changing the Set Point on page 66
- Put the controller in automatic mode. Changing the Control Mode and Output Power on page 66

For more information about the setup menus and parameters, Chapter 6: Menu and Parameter Reference on page 95

Setting Up a Process Input

If you use a process input signal, you must set up scaling parameters in the **Input** menu to scale the raw input signals to the engineering units of the process.

Input Scaling

To scale the input, you enter values that represent two points on a conversion line. Each point indicates an input signal level and the corresponding process value.

The input signal is expressed as percent of full range. For example, for a 0 to 20mA process input, 0mA is 0 percent, 10mA is 50 percent, and so on.

The conversion line scales the input signal to the engineering units of the process. For example, in Figure 4.6 on the following page, a 20 percent input signal corresponds to 8 pounds per square inch (PSI), and a 100 percent signal corresponds to 28 PSI.
The range for set points and alarms is bound by the process variables that correspond to the 0 percent and 100 percent input signals. Bear in mind that the range for set points and alarms is not bound by the low and high process variable ranges that you enter in the scaling parameters.

Input Scaling Example: 4 to 20mA Sensor

Situation
Suppose the controller has a 0 to 20mA process input that is connected to a pressure sensor. The pressure sensor has a range of 4 to 20mA, representing 0.0 to 50.0 pounds per square inch (PSI).

Setup
Set the scaling parameters in the *Input* menu as follows:

- For the *Input* type parameter, choose *process*.
- For the *Disp format* parameter, choose -999.9to 3000.0, because the sensor measures PSI in tenths.
- For the *Input signal low* and *Input signal high* parameters, use the minimum and maximum range of the sensor. In this case, the sensor range is 4 to 20mA. The range must be expressed in percent of full scale. To determine the percentages, divide the minimum and maximum sensor range (4mA and 20mA) by the maximum signal that the controller can accept (20mA):
 - \(\text{Input signal low} = \frac{4mA}{20mA} = 0.2 = 20\% \)
 - \(\text{Input signal high} = \frac{20mA}{20mA} = 1.0 = 100\% \)
- For the *Input range low* and *Input range high* parameters, enter the process values that correspond to the low and high signals. In this case, a 20 percent (4mA) signal represents 0.0 PSI. A 100 percent (20mA) signal represents 50.0 PSI.
Table 4.4 – Input Readings

<table>
<thead>
<tr>
<th>PROCESS VARIABLE DISPLAYED</th>
<th>SENSOR INPUT</th>
<th>READING IN PERCENT OF FULL SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0 PSI</td>
<td>20mA</td>
<td>100%</td>
</tr>
<tr>
<td>.0 PSI</td>
<td>4mA</td>
<td>100% x (4mA/20mA) = 20%</td>
</tr>
</tbody>
</table>

Table 4.5 – Scaling Values

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input range high</td>
<td>50.0 PSI</td>
</tr>
<tr>
<td>Input high signal</td>
<td>100.0%</td>
</tr>
<tr>
<td>Input range low</td>
<td>.0 PSI</td>
</tr>
<tr>
<td>Input low signal</td>
<td>20.0%</td>
</tr>
</tbody>
</table>

Input Scaling Example: 0 to 5VDC Sensor

Situation
A flow sensor connected to the controller measures the flow in a pipe. The sensor generates a 0 to 5VDC signal. Independent calibration measurements of the flow in the pipe indicate that the sensor generates 0.5V at 3 gallons per minute (GPM) and 4.75V at 65 GPM. The calibration instrument is accurate ±1 GPM.

Setup
For the Disp format parameter in the Input menu, choose -999 to 3000, because the calibrating instrument is precise to ±1 GPM.

Table 4.6 and Table 4.7 show the minimum and maximum input signals and their corresponding process variables, and the resulting values for the scaling parameters.

Table 4.6 – Input Readings and Calculations

<table>
<thead>
<tr>
<th>PROCESS VARIABLE DISPLAYED</th>
<th>SENSOR INPUT</th>
<th>READING IN PERCENT OF FULL SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 GPM</td>
<td>4.75V</td>
<td>(4.75V / 5.00V) x 100% = 95%</td>
</tr>
<tr>
<td>3 GPM</td>
<td>0.5V</td>
<td>(0.5V / 5.00V) x 100% = 10%</td>
</tr>
</tbody>
</table>
Table 4.7 – Scaling Values

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input range high</td>
<td>65 GPM</td>
</tr>
<tr>
<td>Input high signal</td>
<td>95.0%</td>
</tr>
<tr>
<td>Input range low</td>
<td>3 GPM</td>
</tr>
<tr>
<td>Input low signal</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

Autotuning

Autotuning is a process by which a controller calculates the correct PID parameters for optimum control. Only the heat output of a loop may be autotuned.

How Does Autotuning Work?

Autotuning is performed at the maximum allowed output. If an output limit has been set, then autotuning occurs at that value. Otherwise, the control output is set to 100 percent.

The PID constants are calculated according to process response to the output. The loop need not reach or cross the set point to successfully determine the PID parameters.

The controller looks at the delay between when power is applied and when the system responds and uses this information to determine the proportional band. The controller then looks for the slope of the rising temperature to become constant to determine the integral term. The controller mathematically derives the derivative term from the integral term.

When the controller finishes autotuning a loop, it switches the loop to automatic mode. If the process reaches 80 percent of the set point or the autotuning time exceeds 30 minutes, the controller switches the loop to automatic mode and applies the PID constants it has calculated up to that point.

Autotuning is started at ambient temperature or at a temperature above ambient. However, the temperature must be stable and there must be sufficient time for the controller to determine the new PID parameters.

Prerequisites

Before autotuning, the controller must be installed with control and sensor circuitry and the thermal load in place. It must be safe to operate the thermal system, and the approximate desired operating temperature (set point) must be known.

The technician or engineer performing the autotune should know how to use the controller keypad or HMI software interface to do the following:

- Select a loop.
- Change the set point.
- Change the control mode (manual, automatic, off or tune).
- Read and change the setup parameters.
How to Autotune a Loop

NOTE! The loop must be stable at a temperature well below the set point in order to successfully autotune. The controller will not complete tuning if the temperature exceeds 80 percent of set point before the new parameters are found.

To autotune a loop:

1. Go to the loop display (Loop Display on page 62) and press -loop- to choose the loop to autotune.
2. Verify that process is stable.
3. Put the loop into manual control mode (see page 66).
4. Enter a set point value as near the normal operating temperature as is safe for the system (see page 66).

WARNING! During autotuning, the controller sets the output to 100 percent until the process variable rises to 80 percent of set point. Enter a set point that is within the safe operating limits of your system.

5. Access the setup menus (see page 67). Go to the Input filter parameter in the Input menu. Write down the value, and then change it to 0 scans. Press - to save the new setting.
6. Press - twice to return to the loop display.
7. Set the Mode parameter to tune (see page 66).
8. The controller will automatically return to the loop display. The word tun flashes throughout the tuning process. When tuning is complete, the control mode indicator changes to auto.
9. Adjust the set point to the desired operating temperature (see page 66).
10. Restore the Input filter parameter to its original value.

Setting Up Alarms

The D8 has three main types of alarms:

- Failed sensor alarms
- Process alarms
- System alarms

Failed Sensor Alarms

Failed sensor alarms alert you if one of the following conditions occurs:

- Thermocouple open
- Thermocouple shorted (must be enabled)
- Thermocouple reversed (enabled by default)
- RTD open positive input or open negative input
- RTD short between the positive and negative inputs
What Happens if a Failed Sensor Alarm Occurs?

If a failed sensor alarm occurs:

- The controller switches to manual mode at the output power indicated by the Sensor fail heat output and Sensor fail cool output parameters in the Output menu. (The output power may be different for a thermocouple open alarm; see Thermocouple Open Alarm below.)
- The controller displays an alarm code and alarm message on the display. Alarm Displays on page 63
- The global alarm output is activated.

Thermocouple Open Alarm

The thermocouple open alarm occurs if the controller detects a break in a thermocouple or its leads. If a thermocouple open alarm occurs, the controller switches to manual mode. The output level is determined as follows:

- If the Open T/C ht/cl out average parameter in the Output menu is set to on, then the controller sets the output power to an average of the recent output.
- If the Open T/C ht/cl out average parameter is set to off, then the controller sets the output to the level indicated by the Sensor fail heat/cool output parameter in the Output menu.

Thermocouple Reversed Alarm

The thermocouple reversed alarm occurs if the temperature goes in the opposite direction and to the opposite side of ambient temperature than expected—for example, a loop is heating and the measured temperature drops below the ambient temperature.

The thermocouple reversed alarm is enabled by default. If false alarms occur in your application, you can disable the alarm by setting the Reversed T/C detect parameter to off. Reversed Thermocouple Detection on page 109

Thermocouple Short Alarm

The thermocouple short alarm occurs if the process power is on and the temperature does not rise or fall as expected. To enable the thermocouple short alarm, you must do the following:

- Choose a digital input for the TC short alarm parameter in the Global setup menu.
- Connect the digital input to a device that connects the input to controller common when the process power is on.

RTD Open and RTD Fail Alarms

The RTD open alarm occurs if the controller detects that the positive RTD lead is broken or disconnected.

The RTD fail alarm occurs if the controller detects any of the following conditions:

- negative lead is broken or disconnected
- common lead is broken or disconnected
- positive and negative leads are shorted
- positive and common leads are shorted
- positive, negative and common leads are shorted
The RTD alarms are enabled on any loop with Input Type set to RTD.

Restore Automatic Control After a Sensor Failure
This feature returns a loop to automatic control after a failed sensor is repaired. To enable this feature:
- Choose a digital input for the *RestoreAuto* parameter in the *Control* menu.
- Connect the digital input to the dc common terminal on the controller.

Process Alarms
The D8 has four process alarms, each of which you can configure separately for each loop:
- Alarm low
- Alarm high
- Low deviation alarm
- High deviation alarm

What Happens if a Process Alarm Occurs?
If a process alarm occurs, the controller does the following:
- Shows an alarm code on the display. *Alarm Displays* on page 63
- Activates the global alarm output. *Global Alarm* on page 76
- Activates the digital output that is assigned to the process alarm (if applicable). The digital output remains active until the process variable returns within the corresponding limit and hysteresis. The alarm output deactivates when the process returns to normal.

Process Alarm Outputs
Any digital output that is not used as a control output can be assigned to one or more process alarms.

The controller activates the output if any alarm assigned to the output is active. Process alarm outputs are non-latching—that is, the output is deactivated when the process returns to normal, whether or not the alarm has been acknowledged.

Specify the active state of process alarm outputs at the *D/O alarm polarity* setting in the *Global setup* menu.

Alarm Function: Standard Alarm or Boost Output
You can configure each process alarm as either a standard alarm or a boost alarm:
- A standard alarm provides traditional alarm functionality: The operator must acknowledge the alarm message on the controller display, a latching global alarm is activated, and the alarm can activate a user-specified nonlatching alarm output.
- A boost alarm provides on/off control output using the alarm set points. For example, you could configure a high deviation alarm to turn on a fan. The alarm activates a user-specified non-latching output. Alarm messages do not have to be acknowledged, and the global alarm is not activated.
Alarm High and Alarm Low

An alarm high occurs if the process variable rises above a user-specified value. An alarm low occurs if the process variable drops below a separate user-specified value. See Figure 4.7 below.

Enter the alarm high and low set points at the **Alarm high SP** and **Alarm low SP** parameters in the **Alarms** menu.

![Figure 4.7 – Activation and Deactivation of Process Alarms](image)

Deviation Alarms

A deviation alarm occurs if the process deviates from set point by more than a user-specified amount; see Figure 4.7 above. You can set separate high and low deviation values at the **HiDeviation value** and **LoDeviation value** parameters in the **Alarms** menu.

Upon power up or when the set point changes, the behavior of the deviation alarms depends upon the alarm function:

- If the alarm function parameter is set to **standard**, then deviation alarms do not activate until after the process variable has first come within the deviation alarm band. This prevents nuisance alarms.
- If the alarm function parameter is set to **boost**, then the deviation output switches on whenever the set point and process variable differ by more than the deviation setting, regardless of whether the process variable has been within the deviation band. This allows you to use boost control upon power up and set point changes.

Global Alarm

The D8 comes equipped with a global alarm output. The global output is activated if one or more of the following conditions occurs:

- A system alarm occurs, or
- A failed sensor alarm occurs and is unacknowledged, or
A process alarm occurs and is unacknowledged. The global alarm occurs only if the alarm function is set to standard in the Alarms menu. (The global alarm does not occur if the alarm function is set to boost.)

The global alarm output stays active until all alarms have been acknowledged. When the global alarm output is active, it conducts current to the controller’s dc common. When the global alarm output is not active, it does not conduct current.

NOTE! You cannot configure any parameters for the global alarm. The active state of the global alarm output is NOT affected by the D/O alarm polarity parameter in the Global setup menu.

Setting Up Process Variable Retransmit

The process variable retransmit feature retransmits the process variable of one loop (primary) via the control output of another loop (secondary). This signal is linear and proportional to the engineering units of the primary loop input.

Typical uses include data logging to analog recording systems, and long distance transmission of the primary signal to avoid signal degradation. The retransmitted signal can also be used as an input to other types of control systems such as a PLC.

Any available heat or cool output may be used as a retransmit output. Any process variable may be retransmitted, including the input from the same loop.

To get a 4 to 20mA or 0 to 5VDC signal, the controller output signal must be connected to a Serial DAC.

How to Set Up Process Variable Retransmit

1. Configure all of the setup parameters for the primary loop (the loop whose input signal will be retransmitted).
2. Choose an unused control output to retransmit the input signal. This output may be on the primary loop or on a different loop.
3. On the secondary loop (the loop whose output will retransmit the signal):
 - Set up the parameters in the PV retrans menu. Process Variable Retransmit Menu on page 126
 - Enable the loop’s output and configure it to meet the requirements of the application.
4. If the signal is being retransmitted to another controller, configure the input of that controller to accept the linear output signal produced by the retransmit output.

Process Variable Retransmit Example: Data Logging

The D8 controls the temperature of a furnace. The thermocouple in one of the zones is connected to the controller and is used for closed-loop PID control. An analog recorder data logging system is also in place, and a recording of the process temperature is required. The recorder requires a linear 4 to 20mA input signal, which represents a process variable range of 0 to 1000°F.
Table 4.8 shows the parameter setup for this example.

Table 4.8 – Parameters Settings for Process Variable Retransmit Example

<table>
<thead>
<tr>
<th>MENU</th>
<th>PARAMETER</th>
<th>VALUE</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV retrans</td>
<td>Ht output retrans</td>
<td>PU 1</td>
<td>Choose to retransmit the loop 1 process variable.</td>
</tr>
<tr>
<td>PV retrans</td>
<td>Ht retrans LowPU</td>
<td>0°F</td>
<td>This is the input value represented by a 0 percent output signal. The recorder input is a linear 4 to 20mA signal representing a range of 0°F to 1000°F, so we will use a 0 percent output signal to represent 0°F.</td>
</tr>
<tr>
<td>PV retrans</td>
<td>Ht retrans HighPU</td>
<td>1000°F</td>
<td>This is the input value represented by a 100 percent output signal. The recorder input is a linear 4 to 20mA signal representing a range of 0°F to 1000°F, so we will use a 100 percent output signal to represent 1000°F.</td>
</tr>
<tr>
<td>PV retrans</td>
<td>C1 output retrans</td>
<td>none</td>
<td>Not using the cool output of loop 2 to retransmit a process variable.</td>
</tr>
</tbody>
</table>

To complete this configuration, the output for loop 2 must be configured to provide the 4 to 20mA analog signal (via the Serial DAC) that is required by the data logger.

When setup is completed, the controller will produce an output on loop 2 which is linear and proportional to the loop 1 process variable.
Setting Up Cascade Control

Cascade control is used to control thermal systems with long lag times, which cannot be as accurately controlled with a single control loop. The output of the first (primary) loop is used to adjust the set point of the second (secondary) loop. The secondary loop normally executes the actual control.

Some applications, such as aluminum casting, use two-zone cascade control where the primary output is used for the primary heat control and the cascaded output is used for boost heat. You can use the primary heat output for both control and for determining the set point of the secondary loop.

How the Secondary Set Point is Determined

The set point of the secondary loop is determined according to the heat and cool output values from the primary loop and user-specified cascade parameters:

- If the primary loop has both heat and cool outputs, then the set point of the secondary loop is equal to the Cascade low SP parameter when the cool output is at 100 percent, and is equal to the Cascade high SP when the heat output is at 100 percent. See Figure 4.9 below.
- If the primary loop has only a heat output, then the set point of the secondary loop is equal to the Cascade low SP parameter when the heat output is at 0 percent, and is equal to the Cascade high SP parameter when the heat output is at 100 percent. See Figure 4.10 below.
- If the primary loop has only a cool output, then the set point of the secondary loop is equal to the Cascade low SP parameter when the cool output is at 100 percent, and is equal to the Cascade high SP parameter when the cool output is at 0 percent.

![Figure 4.9 – Secondary Set Point When Primary Loop Has Heat and Cool Outputs](image-url)
Proportional-Only Control on the Primary Loop

The PID parameters of the primary loop must be tuned to produce the desired effect on the set point of the secondary loop. The primary loop typically uses proportional-only control. Disabling the integral and derivative components of PID makes the secondary set point a predictable function of the primary loop’s process variable.

The proportional band is selected so that the set point of the secondary loop has the desired relationship to the process variable of the primary loop. See the example below.

How To Set Up Cascade Control

1. For the primary cascade loop:
 - Configure proportional-only control. See the example below.
 - Enter the desired set point. Changing the Set Point on page 66

2. For the secondary cascade loop:
 - Set up PID control as you would for a standard closed-loop application.
 - Set up the parameters in the Cascade menu. Cascade Menu on page 128

NOTE! Cascade control cannot be used on the same control loop as ratio control.

Cascade Control Example: Water Tank

A tank of water has an inner and outer thermocouple. The outer thermocouple is located in the center of the water. The inner thermocouple is located near the heating element. The desired temperature of the water is 150°F, which is measured at the outer thermocouple.
Using cascade control, the outer thermocouple is used on the primary loop (in this example, loop 1), and the inner thermocouple is used on the secondary loop (loop 2). The heater is controlled by loop 2.

As the temperature of the outer thermocouple drops from 150°F to 140°F, the set point of the secondary loop should rise from 150 to 190°F.

Table 4.9 and Table 4.10 show the setup for this application.

Figure 4.11 – Example Application Using Cascade Control

Table 4.9 – Parameter Settings for the Primary Loop in the Cascade Example

<table>
<thead>
<tr>
<th>MENU</th>
<th>PARAMETER</th>
<th>VALUE</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(none)</td>
<td>Set point</td>
<td>150°F</td>
<td>Desired temperature at the inner thermocouple.</td>
</tr>
<tr>
<td>Control</td>
<td>Ht prop band</td>
<td>10</td>
<td>As the input drops 10°F, the output increases to 100 percent.</td>
</tr>
<tr>
<td>Control</td>
<td>Ht integral</td>
<td>0</td>
<td>Only proportional control is used.</td>
</tr>
<tr>
<td>Control</td>
<td>Ht derivative</td>
<td>0</td>
<td>Only proportional control is used.</td>
</tr>
</tbody>
</table>

Table 4.10 – Parameter Settings for the Secondary Loop in the Cascade Example

<table>
<thead>
<tr>
<th>MENU</th>
<th>PARAMETER</th>
<th>VALUE</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade</td>
<td>Cascade prim loop</td>
<td>1</td>
<td>Loop 1 is the primary loop.</td>
</tr>
<tr>
<td>Cascade</td>
<td>Cascade low SP</td>
<td>150°F</td>
<td>When the primary loop’s output is 0 percent, the secondary loop’s set point is 150°F.</td>
</tr>
<tr>
<td>Cascade</td>
<td>Cascade high SP</td>
<td>190°F</td>
<td>When the primary loop output is 100 percent, the secondary loop set point is 190°F.</td>
</tr>
</tbody>
</table>
As the temperature in the middle of the tank (loop 1) drops, the output goes up proportionally and the set point of loop 2 goes up proportionally. Thus heat is added to the system at the element even though the temperature near the element may have been at the desired temperature.

With proportional control, when loop 1 is at set point, its output is 0 percent, and the set point of loop 2 is equal to the desired temperature 150°F. If the temperature of loop 1 drops to 149°F, the deviation results in a proportional output of 10 percent. This results in an increase to the set point for loop 2 equal to 10 percent of the set point range. In this case the range is 40°F (190°F - 150°F = 40°F), and 10 percent of 40°F is 4°F.

So when the temperature at loop 1 drops 1°F, the set point of loop 2 increases by 4°F until the output of loop 1 is 100 percent and the set point of loop 2 is 190°F. At this point, further decreases of the loop 1 process variable have no additional affect on loop 2. Figure 4.12 illustrates this relationship.

Figure 4.12 – Relationship of Secondary Loop

Setting Up Ratio Control

Ratio control allows the process variable of one loop (master loop), multiplied by a ratio, to be the set point of another loop (ratio loop). You can assign any process variable to determine the set point of a ratio loop.

By adjusting the ratio control parameters, you can adjust the influence that the master loop process variable has on the set point of the ratio loop.
How to Set Up Ratio Control

1. Adjust and tune the master loop for optimal performance before implementing the ratio setup.
2. For the ratio loop, set the parameters in the Ratio menu.
3. Configure both the master loop and the ratio loop for inputs, outputs, and alarms.

Ratio Control Example: Diluting KOH

A chemical process requires a formula of two parts water (H₂O) to one part potassium hydroxide (KOH) to produce diluted potassium hydroxide. The desired flow of H₂O is 10 gallons per second (GPS), so the KOH should flow at 5 GPS.

Separate pipes for each chemical feed a common pipe. The flow rate of each feeder pipe is measured by a D8, with H₂O flow measured on loop 1 and KOH flow measured on loop 2. The outputs of loops 1 and 2 adjust motorized valves.
Table 4.11 – Ratio Control Settings for the Ratio Loop (Loop 2) in the Example

<table>
<thead>
<tr>
<th>MENU</th>
<th>PARAMETER</th>
<th>VALUE</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>Ratio master loop</td>
<td>01</td>
<td>Loop 1 is the master loop.</td>
</tr>
<tr>
<td>Ratio</td>
<td>Ratio low SP</td>
<td>0.0</td>
<td>The minimum ratio loop set point is 0.0 gallons per second (GPS).</td>
</tr>
<tr>
<td>Ratio</td>
<td>Ratio high SP</td>
<td>7.0</td>
<td>The maximum ratio loop set point is 7.0 GPS.</td>
</tr>
<tr>
<td>Ratio</td>
<td>Control ratio</td>
<td>0.5</td>
<td>The H_2O flow rate (10 GPS) is multiplied by 0.5 to obtain the KOH flow rate (5 GPS).</td>
</tr>
<tr>
<td>Ratio</td>
<td>Ratio SP diff</td>
<td>0</td>
<td>For this example, there is no set point differential.</td>
</tr>
</tbody>
</table>

Setting Up Differential Control

Differential control is a simple application of ratio control, used to control one process (ratio loop) at a differential, or offset, to another process (master loop).

How to Set Up Differential Control

Set up differential control as you would set up ratio control. Set the *Control ratio* parameter to 1.0, and enter the desired set point differential (offset) at the *Ratio SP diff* parameter.
Differential Control Example: Thermoforming

A thermal forming application requires that the outer heaters run 50°F hotter than the center heaters. The center heaters use infrared (IR) sensors for temperature feedback. The outer heaters use thermocouples for feedback.

We can use differential control to control the outer heaters at a 50°F differential to the central heaters. For example, if the set point for the center heaters is 325°F, the set point of the outer heaters will be 375°F.

In this application, the center heaters will be controlled by the master loop (on loop 1), and the outer heaters will be controlled by the ratio loop (on loop 2).

To set up this application, first set up the master loop (loop 1) for PID control with a set point of 325°F. Then, for the ratio loop (loop 2), set the parameters in the Ratio menu as shown in Table 4.12.

Table 4.12 – Parameter Settings for the Ratio Loop (Loop 2) for the Example

<table>
<thead>
<tr>
<th>MENU</th>
<th>PARAMETER</th>
<th>VALUE</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>Ratio master loop</td>
<td>01</td>
<td>Loop 1 is the master loop.</td>
</tr>
<tr>
<td>Ratio</td>
<td>Ratio low SP</td>
<td>300.0° F</td>
<td>The lowest allowable set point for the ratio loop. For this example, we’ll use 300.0.</td>
</tr>
<tr>
<td>Ratio</td>
<td>Ratio high SP</td>
<td>400.0° F</td>
<td>The highest allowable set point for the ratio loop. For this example, we’ll use 400.0.</td>
</tr>
<tr>
<td>Ratio</td>
<td>Control ratio</td>
<td>1.0</td>
<td>For differential control, always set this parameter to 1.0.</td>
</tr>
<tr>
<td>Ratio</td>
<td>Ratio SP diff</td>
<td>50.0° F</td>
<td>The set point differential, or offset.</td>
</tr>
</tbody>
</table>

To complete the differential control setup, loop 1 and loop 2 must be configured for inputs, outputs and alarms.

Setting Up Remote Analog Set Point

Remote analog set point allows external equipment, such as a PLC or other control system, to change the set point of a loop.

Typically, a voltage or current source is connected to an analog input on the controller, and this input is configured as the master loop for ratio control.

Proper scaling resistors must be installed on the input to allow it to accept the analog input signal.

How to Set Up a Remote Analog Set Point

1. For the master loop (the loop that accepts the input signal from the external device), set the parameters in the Input menu.

2. For the ratio loop (the one whose set point is controlled by the external device), set the parameters in the Ratio menu. Specify the loop that accepts the input signal as the master loop.
Remote Analog Set Point Example: Changing a Set Point with a PLC

A PLC provides a 0 to 5VDC signal representing 0 to 300°F as a remote set point input to the D8. The input signal is received on loop 1, and control is performed on loop 2. The D8 is equipped with the proper scaling resistors to allow it to accept a 0 to 5VDC input.

Table 4.13 and Table 4.14 show the parameter settings for this application.

Table 4.13 – Parameters Settings for the Master Loop (Loop 1) in the Example

<table>
<thead>
<tr>
<th>MENU</th>
<th>PARAMETER</th>
<th>VALUE</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Input type</td>
<td>process</td>
<td>A 0 to 5VDC input signal is a process input.</td>
</tr>
<tr>
<td>Input</td>
<td>Input range high</td>
<td>300.0° F</td>
<td>The 5VDC input signal represents 300°F.</td>
</tr>
<tr>
<td>Input</td>
<td>Input high signal</td>
<td>100.0%</td>
<td>The controller is equipped with a 0 to 5VDC input, and the input signal is 0 to 5VDC, so the signal covers the full scale of 0 to 100 percent.</td>
</tr>
<tr>
<td>Input</td>
<td>Input range low</td>
<td>0° F</td>
<td>The 0VDC input signal represents 0° F.</td>
</tr>
<tr>
<td>Input</td>
<td>Input low signal</td>
<td>0.0%</td>
<td>The controller is equipped with a 0 to 5VDC input, and the input signal is 0 to 5VDC, so the signal covers the full scale of 0 to 100 percent.</td>
</tr>
</tbody>
</table>

Table 4.14 – Parameter Settings for the Ratio Loop (Loop 2) in the Example

<table>
<thead>
<tr>
<th>MENU</th>
<th>PARAMETER</th>
<th>VALUE</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>Ratio master loop</td>
<td>01</td>
<td>Loop 1 is the master loop (receives the input signal from the external device).</td>
</tr>
<tr>
<td>Ratio</td>
<td>Ratio low SP</td>
<td>0° F</td>
<td>For this example, we will assume that the process can be set safely over the entire range of 0 to 300°F. If desired, we could set a more restrictive range for the ratio loop.</td>
</tr>
<tr>
<td>Ratio</td>
<td>Ratio high SP</td>
<td>300.0° F</td>
<td>For this example, we want to retain the original input value, so we will multiply it times 1.0.</td>
</tr>
<tr>
<td>Ratio</td>
<td>Control ratio</td>
<td>1.0</td>
<td>For this example, we want to retain the original value, so we will add 0.</td>
</tr>
<tr>
<td>Input</td>
<td>Ratio SP diff</td>
<td>0</td>
<td>For this example, we want to retain the original value, so we will add 0.</td>
</tr>
</tbody>
</table>

To complete the setup, loop 2 must be configured for inputs, outputs, and alarms. In addition, loop 1 may be configured for outputs and alarms.
Chapter 5: Tuning and Control

This chapter describes the different methods of control available with the D8. This chapter covers control algorithms, control methods, PID control, starting PID values and tuning instructions to help appropriately set control parameters in the D8 system.

Control Algorithms

This section explains the algorithms available for controlling a loop.

The control algorithm dictates how the controller responds to an input signal. Do not confuse control algorithms with control output signals (for example, analog or pulsed dc voltage). There are several control algorithms available:

- On/off
- Proportional (P)
- Proportional and integral (PI)
- Proportional with derivative (PD)
- Proportional with integral and derivative (PID)

P, PI or PID control is necessary when process variable cycling is unacceptable or if the load or set point varies.

NOTE! For any of these control algorithms to function, the loop must be in automatic mode.

On/Off Control

On/off control is the simplest way to control a process. The controller turns an output on or off when the process variable reaches limits around the desired set point. This limit is adjustable.

For example, if the set point is 1000°F and the control hysteresis is 20°F, the heat output switches on when the process variable drops below 980°F and off when the process rises above 1000°F. A process using on/off control cycles around the set point. Figure 5.1 illustrates this example.
Proportional Control (P)

Proportional control eliminates cycling by increasing or decreasing the output proportionally with the process variable’s deviation from the set point.

The magnitude of proportional response is defined by the proportional band. Outside this band, the output is either 100 percent or 0 percent. Within the proportional band the output power is proportional to the process variable’s deviation from the set point.

For example, if the set point is 1000°F and the proportional band is 20°F, the output power is as follows:

- 0 percent when the process variable is 1000°F or above
- 50 percent when the process variable is 990°F
- 75 percent when the process variable is 985°F
- 100 percent when the process variable is 980°F or below

However, a process that uses only proportional control settles at a point above or below the set point; it never reaches the set point. This behavior is known as offset or droop. When using proportional control, configure the manual reset parameter for the power level required to maintain set point.
Proportional and Integral Control (PI)

With proportional and integral control, the integral term corrects for offset by repeating the proportional band's error correction until there is no error. For example, if a process tends to settle about 5°F below the set point, appropriate integral control brings it to the desired setting by gradually increasing the output until there is no deviation.

![Proportional and Integral Control](image)

Figure 5.3 – Proportional and Integral Control

Proportional and integral action working together can bring a process to set point and stabilize it. However, with some processes the user may be faced with choosing between parameters that make the process very slow to reach set point and parameters that make the controller respond quickly, but introduce some transient oscillations when the set point or load changes. The extent to which these oscillations cause the process variable to exceed the set point is called *overshoot*.

Proportional, Integral and Derivative Control (PID)

Derivative control corrects for overshoot by anticipating the behavior of the process variable and adjusting the output appropriately. For example, if the process variable is rapidly approaching the set point from below, derivative control reduces the output, anticipating that the process variable will reach set point. Use derivative control to reduce the overshoot and oscillation of the process variable that is common to PI control.

Figure 5.4 shows a process under full PID control.

![Proportional, Integral and Derivative Control](image)

Figure 5.4 – Proportional, Integral and Derivative Control
Heat and Cool Outputs

Each loop may have one or two outputs. Often a heater is controlled according to the feedback from a thermocouple, in which case only one output is needed.

In other applications, two outputs may be used for control according to one input. For example, a system with a heater and a proportional valve that controls cooling water flow can be controlled according to feedback from one thermocouple.

In such systems, the control algorithm avoids switching too frequently between heat and cool outputs. The on/off algorithm uses the control hysteresis parameter to prevent such oscillations (see Hysteresis on page 115). When PID control is used for one or both loop outputs, both the hysteresis parameter and PID parameters determine when control switches between heating and cooling.

Setting Up and Tuning PID Loops

After installing your control system, tune each control loop and then set the loop to automatic control. When tuning a loop, choose PID parameters that will best control the process. This section gives PID values for a variety of heating and cooling applications.

NOTE! Tuning is a slow process. After adjusting a loop, allow about 20 minutes for the change to take effect.

Proportional Band Settings

Table 5.1 shows proportional band settings for various temperatures in degrees Fahrenheit or Celsius.

<table>
<thead>
<tr>
<th>TEMPERATURE SET POINT</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100 to 99</td>
<td>20</td>
</tr>
<tr>
<td>100 to 199</td>
<td>20</td>
</tr>
<tr>
<td>200 to 299</td>
<td>30</td>
</tr>
<tr>
<td>300 to 399</td>
<td>35</td>
</tr>
<tr>
<td>400 to 499</td>
<td>40</td>
</tr>
<tr>
<td>500 to 599</td>
<td>45</td>
</tr>
<tr>
<td>600 to 699</td>
<td>50</td>
</tr>
<tr>
<td>700 to 799</td>
<td>55</td>
</tr>
<tr>
<td>800 to 899</td>
<td>60</td>
</tr>
<tr>
<td>900 to 999</td>
<td>65</td>
</tr>
<tr>
<td>1000 to 1099</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEMPERATURE SET POINT</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100 to 1199</td>
<td>75</td>
</tr>
<tr>
<td>1200 to 1299</td>
<td>80</td>
</tr>
<tr>
<td>1300 to 1399</td>
<td>85</td>
</tr>
<tr>
<td>1400 to 1499</td>
<td>90</td>
</tr>
<tr>
<td>1500 to 1599</td>
<td>95</td>
</tr>
<tr>
<td>1600 to 1699</td>
<td>100</td>
</tr>
<tr>
<td>1700 to 1799</td>
<td>105</td>
</tr>
<tr>
<td>1800 to 1899</td>
<td>110</td>
</tr>
<tr>
<td>1900 to 1999</td>
<td>120</td>
</tr>
<tr>
<td>2000 to 2099</td>
<td>125</td>
</tr>
<tr>
<td>2100 to 2199</td>
<td>130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEMPERATURE SET POINT</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2200 to 2299</td>
<td>135</td>
</tr>
<tr>
<td>2300 to 2399</td>
<td>140</td>
</tr>
<tr>
<td>2400 to 2499</td>
<td>145</td>
</tr>
<tr>
<td>2500 to 2599</td>
<td>150</td>
</tr>
<tr>
<td>2600 to 2699</td>
<td>155</td>
</tr>
<tr>
<td>2700 to 2799</td>
<td>160</td>
</tr>
<tr>
<td>2800 to 2899</td>
<td>165</td>
</tr>
<tr>
<td>2900 to 2999</td>
<td>170</td>
</tr>
<tr>
<td>3000 to 3099</td>
<td>175</td>
</tr>
<tr>
<td>3100 to 3199</td>
<td>180</td>
</tr>
<tr>
<td>3200 to 3299</td>
<td>185</td>
</tr>
</tbody>
</table>

As a general rule, set the proportional band to ten percent of the set point below 1000° and five percent of the set point above 1000°. This setting is useful as a starting value.
Integral Settings

The controller's integral parameter is set in seconds per repeat. Some other products use an integral term called reset, in units of repeats per minute. Table 5.2 shows integral settings versus reset settings.

Table 5.2 – Integral Term and Reset Settings

<table>
<thead>
<tr>
<th>INTEGRAL (SECONDS/REPEAT)</th>
<th>RESET (REPEATS/MINUTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>2.0</td>
</tr>
<tr>
<td>45</td>
<td>1.3</td>
</tr>
<tr>
<td>60</td>
<td>1.0</td>
</tr>
<tr>
<td>90</td>
<td>0.66</td>
</tr>
<tr>
<td>120</td>
<td>0.50</td>
</tr>
<tr>
<td>150</td>
<td>0.40</td>
</tr>
<tr>
<td>180</td>
<td>0.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTEGRAL (SECONDS/REPEAT)</th>
<th>RESET (REPEATS/MINUTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>0.28</td>
</tr>
<tr>
<td>240</td>
<td>0.25</td>
</tr>
<tr>
<td>270</td>
<td>0.22</td>
</tr>
<tr>
<td>300</td>
<td>0.20</td>
</tr>
<tr>
<td>400</td>
<td>0.15</td>
</tr>
<tr>
<td>500</td>
<td>0.12</td>
</tr>
<tr>
<td>600</td>
<td>0.10</td>
</tr>
</tbody>
</table>

As a general rule, use 60, 120, 180 or 240 as a starting value for the integral.

Derivative Settings

The controller's derivative parameter is programmed in seconds. Some other products use a derivative term called rate programmed in minutes. Use the table or the formula to convert parameters from one form to the other. Table 5.3 shows derivative versus rate. Rate = Derivative/60.

Table 5.3 – Derivative Term Versus Rate

<table>
<thead>
<tr>
<th>DERIVATIVE (SECONDS)</th>
<th>RATE (MINUTES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.08</td>
</tr>
<tr>
<td>10</td>
<td>0.16</td>
</tr>
<tr>
<td>15</td>
<td>0.25</td>
</tr>
<tr>
<td>20</td>
<td>0.33</td>
</tr>
<tr>
<td>25</td>
<td>0.41</td>
</tr>
<tr>
<td>30</td>
<td>0.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DERIVATIVE (SECONDS)</th>
<th>RATE (MINUTES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>0.58</td>
</tr>
<tr>
<td>40</td>
<td>0.66</td>
</tr>
<tr>
<td>45</td>
<td>0.75</td>
</tr>
<tr>
<td>50</td>
<td>0.83</td>
</tr>
<tr>
<td>55</td>
<td>0.91</td>
</tr>
<tr>
<td>60</td>
<td>1.00</td>
</tr>
</tbody>
</table>

As a general rule, set the derivative to 15 percent of integral as a starting value.

NOTE! While the basic PID algorithm is well defined and widely recognized, various controllers implement it differently. Parameters may not be taken from one controller and applied to another with optimum results even if the above unit conversions are performed.
General PID Constants by Application

This section gives PID values for many applications. They are useful as control values or as starting points for PID tuning.

Proportional Band Only (P)
- Set the proportional band to seven percent of the set point.
 (Example: Set point = 450, proportional band = 31).

Proportional with Integral (PI)
- Set the proportional band to ten percent of set point.
 (Example: Set point = 450, proportional band = 45).
- Set integral to 60.
- Set derivative off.
- Set the output filter to 2.

Proportional and Integral with Derivative (PID)
- Set the proportional band to ten percent of the set point.
 (Example: Set point = 450, proportional band = 45).
- Set the integral to 60.
- Set the derivative to 15 percent of the integral.
 (Example: Integral = 60, derivative = 9).
- Set the output filter to 2.

Table 5.4 shows general PID constants by application.

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>PROPORTIONAL BAND</th>
<th>INTEGRAL</th>
<th>DERIVATIVE</th>
<th>FILTER</th>
<th>OUTPUT TYPE</th>
<th>CYCLE TIME</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical heat with solid state relays</td>
<td>50°</td>
<td>60</td>
<td>15</td>
<td>4</td>
<td>DZC</td>
<td>–</td>
<td>Reverse</td>
</tr>
<tr>
<td>Electrical heat with electromechanical relays</td>
<td>50°</td>
<td>60</td>
<td>15</td>
<td>6</td>
<td>TP</td>
<td>20</td>
<td>Reverse</td>
</tr>
<tr>
<td>Cool with solenoid valve</td>
<td>70°</td>
<td>500</td>
<td>90</td>
<td>4</td>
<td>TP</td>
<td>10</td>
<td>Direct</td>
</tr>
<tr>
<td>Cool with fans</td>
<td>10°</td>
<td>Off</td>
<td>10</td>
<td>4</td>
<td>TP</td>
<td>10</td>
<td>Direct</td>
</tr>
<tr>
<td>Electric heat with open heat coils</td>
<td>30°</td>
<td>20</td>
<td>Off</td>
<td>4</td>
<td>DZC</td>
<td>–</td>
<td>Reverse</td>
</tr>
<tr>
<td>Gas heat with motorized valves</td>
<td>60°</td>
<td>120</td>
<td>25</td>
<td>8</td>
<td>Analog</td>
<td>–</td>
<td>Reverse</td>
</tr>
<tr>
<td>Set Point >1200</td>
<td>100°</td>
<td>120</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Control Outputs

The controller provides open collector outputs for control. These outputs normally control the process using solid state relays.

Open collector outputs can be configured to drive a serial digital-to-analog converter (Serial DAC) which, in turn, can provide 0 to 5VDC, 0 to 10VDC or 4 to 20mA control signals to operate field output devices.

Output Control Signals

The following sections explain the different control output signals available.

On/Off

When on/off control is used, the output is on or off depending on the difference between the set point and the process variable. PID algorithms are not used with on/off control. The output variable is always off or on (0 or 100 percent).

Time Proportioning (TP)

With time proportioning outputs, the PID algorithm calculates an output between 0 and 100 percent, which is represented by turning on an output for that percent of a fixed, user-selected time base or cycle time.

The cycle time is the time over which the output is proportioned, and it can be any value from 1 to 255 seconds. For example, if the output is 30 percent and the cycle time is ten seconds, then the output will be on for three seconds and off for seven seconds. Figure 5.5 shows examples of time proportioning and distributed zero crossing (DZC) waveforms.

Distributed Zero Crossing (DZC)

With DZC outputs, the PID algorithm calculates an output between 0 and 100 percent, but the output is distributed on a variable time base. For each ac line cycle, the controller decides whether the power should be on or off. There is no fixed cycle time since the decision is made for each line cycle. When used in conjunction with a zero crossing device, such as a solid state relay (SSR), switching is done only at the zero crossing of the ac line, which helps reduce electrical noise.

Using a DZC output should extend the life of heaters. Since the time period for 60 Hz power is 16.6ms, the switching interval is very short and the power is applied uniformly. DZC should be used with SSRs. Do not use DZC output for electromechanical relays.
The combination of DZC output and a solid state relay can inexpensively approach the effect of analog, phase-angle fired control. Note, however, DZC switching does not limit the current and voltage applied to the heater as phase-angle firing does.

Three-Phase Distributed Zero Crossing (3P DZC)

This output type performs exactly the same as DZC except that the minimum switching time is three ac line cycles. This may be advantageous in some applications using three-phase heaters and three-phase power switching.

Analog Outputs

For analog outputs, the PID algorithm calculates an output between 0 and 100 percent. This percentage of the analog output range can be applied to an output device via a Dual DAC or a Serial DAC.

Output Filter

The output filter digitally smooths PID control output signals. It has a range of 0 to 255 scans, which gives a time constant of 0 to 85 seconds for an eight-loop controller or 0 to 43 seconds for a four-loop controller. Use the output filter if you need to filter out erratic output swings due to extremely sensitive input signals, such as a turbine flow signal or an open air thermocouple in a dry air gas oven.

The output filter can also enhance PID control. Some processes are very sensitive and would otherwise require a large proportional band, making normal control methods ineffective. Using the output filter allows a smaller proportional band to be used, achieving better control.

Also, use the filter to reduce the process output swings and output noise when a large derivative is necessary, or to make badly tuned PID loops and poorly designed processes behave properly.

Reverse and Direct Action

With reverse action an increase in the process variable causes a decrease in the output. Conversely, with direct action an increase in the process variable causes an increase in the output. Heating applications normally use reverse action and cooling applications usually use direct action.
Chapter 6: Menu and Parameter Reference

The D8 has operator and setup parameters that let you change the configuration of the controller. This section contains the following information for each operator and setup parameter:

- Description
- Values
- Default value
- Information for addressing controller parameters via DeviceNet™.

For information about how to access the operator and setup parameters, Chapter 4: Operation and Setup on page 61

Operator Parameters

Use the operator parameters to change the set point, control mode or output power level.

![Operator Parameter Navigation]

Set Point

Enter the desired value for the process variable. The new set point will take effect immediately when you save the new value. The *Set point* parameter is not available if ratio control or cascade control is enabled for the loop.
Values: For thermocouples and RTD inputs, same as the input range (see Table 6.7). For process inputs, any value between the *Input range low* and *Input range high* parameters in the *Input* menu.

Default: 25

Decimal Placement for DeviceNet™: Decimal Placement for Numeric Values on page 46

DeviceNet™ Object: Assembly (04 hex), Input (64 hex)

Mode

Choose the control mode for this loop.

Values: See Table 6.1

Default: off (3)

DeviceNet™ Object: Assembly (04 hex), Control (66 hex)

Table 6.1 – Control Modes

<table>
<thead>
<tr>
<th>DISPLAY VALUE</th>
<th>DeviceNet™ VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>manual</td>
<td>0</td>
<td>The operator manually sets the output power for the loop.</td>
</tr>
<tr>
<td>auto</td>
<td>1</td>
<td>The controller automatically controls the outputs according to the controller configuration.</td>
</tr>
<tr>
<td>tune</td>
<td>2</td>
<td>The controller calculates PID parameters for the loop. After tuning, the controller switches to automatic mode.</td>
</tr>
<tr>
<td>Off</td>
<td>3</td>
<td>Outputs are at 0%</td>
</tr>
</tbody>
</table>

Heat/Cool Output

Choose the manual output power level for this loop. This parameter is available only for the manual control mode.

Values: 0 to 100% (0 to 1000). Values in parentheses are for communications.

Default: 0% (0)

Decimal Placement for DeviceNet™: Decimal Placement for Percentage Values on page 46

DeviceNet™ Object: Assembly (04 hex), Output (65 hex)
Process Variable

Indicates the value measured by the sensor after filtering and scaling. This parameter is read-only.

Values: For thermocouples and RTD inputs, same as the input range (Table 6.7 – Input Types and Ranges on page 107). For process inputs, any value between the Input range low and Input range high parameters in the Input menu.

Decimal Placement for DeviceNet™: Decimal Placement for Numeric Values on page 46

DeviceNet™ Object: Assembly (04 hex), Input (64 hex)

Overview of the Setup Menus

The D8 has nine setup menus. Table 6.2 provides a brief description of each menu. Figure 6.2 lists all of the menus and parameters in the same order that they appear in the controller.

Table 6.2 – D8 Setup Menus

<table>
<thead>
<tr>
<th>MENU</th>
<th>DESCRIPTION</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global setup</td>
<td>Configure global settings, which affect all loops.</td>
<td>99</td>
</tr>
<tr>
<td>Input</td>
<td>Configure the input for each loop.</td>
<td>107</td>
</tr>
<tr>
<td>Control</td>
<td>Configure PID control for each loop.</td>
<td>112</td>
</tr>
<tr>
<td>Output</td>
<td>Configure heat and cool outputs for each loop.</td>
<td>116</td>
</tr>
<tr>
<td>Alarms</td>
<td>Configure alarms for each loop.</td>
<td>121</td>
</tr>
<tr>
<td>PV retrans</td>
<td>Configure process variable retransmit.</td>
<td>126</td>
</tr>
<tr>
<td>Cascade</td>
<td>Configure cascade control.</td>
<td>128</td>
</tr>
<tr>
<td>Ratio</td>
<td>Configure ratio control.</td>
<td>129</td>
</tr>
<tr>
<td>I/O test</td>
<td>Perform tests of the digital inputs, digital outputs, and keypad.</td>
<td>131</td>
</tr>
</tbody>
</table>
Global setup
- Load setup from job
- Save setup as job
- BCD job load
- BCD job load logic
- Mode override
- Mode override D/I active
- Power up alarm delay
- Power up loop mode
- Keypad lock
- TC short alarm
- AC line freq
- D/O alarm polarity
- MAC ID
- Baud rate
- Module LED
- Network LED
- Bus off count

Input
- Input type
- Loop name
- Input units
- Calibration offset
- Reversed T/C detect
- Disp format
- Input range high
- Input high signal
- Input range low
- Input low signal
- Input filter

Control
- Heat prop band
- Heat integral
- Heat derivative
- Heat manual reset
- Heat filter
- Cool prop band
- Cool integral
- Cool derivative
- Cool manual reset
- Cool filter
- Hysteresis
- RestoreAuto

Output
- Heat output type
- Heat cycle time
- Heat SDAC signal
- Heat SDAC low signal
- Heat SDAC hi signal
- Heat action
- Heat power limit
- HtPwr limit time
- Sensor fail heat output
- Open T/C ht out average
- Heat output curve
- Cool output type
- Cool cycle time
- Cool SDAC signal
- Cool SDAC low signal
- Cool SDAC hi signal
- Cool action
- Cool power limit
- ClPwr limit time
- Sensor fail cool output
- Open T/C cl out average
- Cool output curve

Alarms
- Alarm high SP
- Alarm high func
- Alarm high output
- HiDeviation value
- HiDeviation func
- HiDeviation output
- LoDeviation value
- LoDeviation func
- LoDeviation output
- Alarm low SP
- Alarm low func
- Alarm low output
- Alarm hysteresis
- Alarm delay

PU retrans
- Heat output retrans PU
- Ht retrans LowPU
- Ht retrans HighPU
- Cool output retrans PU
- Cl retrans LowPU
- Cl retrans HighPU

Cascade
- Cascade prim loop
- Cascade low SP
- Cascade hi SP

Ratio
- Ratio master loop
- Ratio low SP
- Ratio high SP
- Control ratio
- Ratio SP diff

I/O tests
- Digital inputs
- Keypad test
- Display test
- Test D/O 1
- ... Test D/O 20

Figure 6.2 - Setup Menus and Parameters
Global Setup Menu

Use the Global setup menu to set parameters that affect all loops.

Load Setup From Job

Load one of the jobs stored in battery-backed RAM. The following parameters are loaded for each loop as part of a job:

- PID constants, filter settings, set points and hysteresis.
- Control mode (automatic, tune, off or manual) and output power levels (if the loop is in manual control)
- Alarm functions, set points, hysteresis and delay settings.

If you have enabled remote job selection (BCD Job Load on page 100), you will see the message below, and you will not be able to use the controller keypad to load a job.

NOTE! Current settings are overwritten when you select a job from memory. Save your current settings to another job number if you want to keep them.

Values: 1 to 8 (1 to 8) or none (0). Values in parentheses are for communications.
Default: none (0)
DeviceNet™ Object: Global (6B hex)
Save Setup As Job

Save the current settings as one of eight jobs in the battery-backed RAM. The following parameters are saved for each loop as part of a job:

- PID constants, filter settings, set points and hysteresis.
- Control mode (automatic, tune, off or manual) and output power levels (if the loop is in manual control)
- Alarm functions, set points, hysteresis and delay settings.

If you have enabled remote job selection (BCD Job Load on page 100), you will see the message below, and you will not be able to use the controller keypad to save a job.

Values: 1 to 8 (1 to 8) or none (0). Values in parentheses are for communications.
Default: none (0)
DeviceNet™ Object: Global (6B hex)

BCD Job Load

Choose the digital input(s) to use for remote job selection. The controller uses the states of the selected inputs as a binary code that specifies which job number to run (see Table 6.3).

To save jobs into memory, use the Save setup as job parameter.

Values: See Table 6.3
Default: disabled (0)
DeviceNet™ Object: Global (6B hex)
Table 6.3 – Values for BCD Job Load

<table>
<thead>
<tr>
<th>DISPLAY VALUE</th>
<th>DeviceNet™ VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>use D/I 1</td>
<td>1</td>
<td>Use digital input 1 for remote selection of jobs 1 and 2.</td>
</tr>
<tr>
<td>use D/I 1-2</td>
<td>2</td>
<td>Use digital inputs 1 and 2 for remote selection of jobs 1 to 4.</td>
</tr>
<tr>
<td>use D/I 1-3</td>
<td>3</td>
<td>Use digital inputs 1 to 3 for remote selection of jobs 1 to 8.</td>
</tr>
<tr>
<td>disabled</td>
<td>0</td>
<td>Disable remote job selection.</td>
</tr>
</tbody>
</table>

BCD Job Load Logic

Choose which state is considered “true” for the digital inputs that are used for remote job selection.

- If \(1=true\) is selected, then an input is true if connected to controller common, and false for an open circuit.
- If \(0=true\) is selected, then an input is true for an open circuit, and false if connected to controller common.

Table 6.4 shows which combinations of input states are required to load each job.

Values: \(1=true\) (0) or \(0=true\) (1). Values in parentheses are for communications.

Default: \(1=true\) (0)

DeviceNet™ Object: Global (6B hex)

Table 6.4 – Digital Input States Required to Load Each Job

<table>
<thead>
<tr>
<th>JOB</th>
<th>DIGITAL INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
</tr>
</tbody>
</table>
Mode Override

Choose the digital input to use for the mode override feature. When the input is activated, the controller sets all loops to manual mode at the output levels specified at the Sensor fail heat output and Sensor fail cool output parameters in the Output menu.

Use the Mode override D/I active parameter to choose which signal state activates the mode override feature.

Values: enabled by D/I1 to enabled by D/I8 (1 to 8) or disabled (0). Values in parentheses are for communications.

Default: disabled (0)

DeviceNet™ Object: Global (6B hex)

WARNING! Do not rely solely on the mode override feature to shut down your process. Install external safety devices or overtemperature devices for emergency shutdowns.

Mode Override Digital Input Active

Choose whether the on state (connected to controller common) or off state (open circuit) activates the mode override feature.

Use the Mode override parameter to enable the mode override feature and select the digital input.

Values: on (0) or off (1). Values in parentheses are for communications.

Default: on (0)

DeviceNet™ Object: Global (6B hex)
Power Up Alarm Delay

Specify how long to delay high, low and deviation alarms on all loops during powerup. This feature does not delay failed sensor alarms.

Values: 0 to 60 minutes
Default: 0
DeviceNet™ Object: Global (6B hex)

Power Up Loop Mode

Choose the power-up state of the control outputs.

Values: See Table 6.5.
Default: off (0)
DeviceNet™ Object: Global (6B hex)

WARNING! Do not set the controller to start from memory if it might be unsafe for the control outputs to be on upon power up.

Table 6.5 – Power Up Loop Modes

<table>
<thead>
<tr>
<th>DISPLAY VALUE</th>
<th>DeviceNet™ VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>0</td>
<td>Upon powerup, all loops are set to manual mode at 0 percent output.</td>
</tr>
<tr>
<td>from memory</td>
<td>1</td>
<td>Upon powerup, all loops are restored to the previous control mode and output power level.</td>
</tr>
</tbody>
</table>
Keypad Lock

Set this parameter to on to disable the key on the keypad. This restricts access to the operator parameters from the controller keypad.

Values: on (1) or off (0). Values in parentheses are for communications, and are stored as the second bit of the system command word, so set or read only that bit.

Default: off (0)
DeviceNet™ Object: Global (6B hex)

Thermocouple Short Alarm

Choose a digital input to enable for thermocouple short detection. Install a device that connects the input to controller common when the process power is on. A thermocouple short is detected if the process power is on but the temperature does not rise as expected.

If a thermocouple short is detected, the controller puts the loop in manual mode at the output power level specified by the Sensor fail heat output or Sensor fail cool output parameter in the Output menu.

Values: enabled by D/I1 to enabled by D/I8 (1 to 8) or disabled (0). Values in parentheses are for communications.

Default: disabled (0)
DeviceNet™ Object: Global (6B hex)

AC Line Frequency

Specify the ac line frequency. The controller uses this information for correct timing of distributed zero-crossing (DZC) output signals and for optimum filtering of analog inputs.

If you edit this parameter, you must switch power to the controller off, then back on, in order for the change to take effect.

Values: 50 (1) or 60 (0) Hz. Values in parentheses are for communications.

Default: 60 Hz (0)
DeviceNet™ Object: Global (6B hex)
Digital Output Alarm Polarity

Choose the polarity of all digital outputs used for alarms. This setting does not apply to the global alarm output or the CPU watchdog output.

Values: See Table 6.6.

Default: on (0)

DeviceNet™ Object: Global (6B hex)

Table 6.6 – Digital Output Alarm Polarity

<table>
<thead>
<tr>
<th>DISPLAY VALUE</th>
<th>DeviceNet™ VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>0</td>
<td>Digital alarm outputs sink current to analog common when an alarm occurs.</td>
</tr>
<tr>
<td>off</td>
<td>1</td>
<td>Digital alarm outputs stop sinking current to analog common when an alarm occurs.</td>
</tr>
</tbody>
</table>

MAC ID

The node address for the controller. This value is set with the Address rotary switches. Connecting the D8 to a DeviceNet Network on page 41

Values: 00 to 63

DeviceNet™ Object: DeviceNet™ (03 hex)

Baud Rate

Indicates the baud rate for communications. This value is set with the Data Rate rotary switch. Connecting the D8 to a DeviceNet Network on page 41

Values: 125, 250, 500K

DeviceNet™ Object: DeviceNet™ (03 hex)
Module LED

Indicates the status of the Module LED.

Values: off, green, red, flashing red, flashing green. Table 2.11 – Module Status Indicator Light on page 44

DeviceNet™ Object: N/A

Network LED

Indicates the status of the Network LED

Values: off, flashing green, green, flashing red, red. Table 2.12 – Network Status Indicator Light on page 44

DeviceNet™ Object: N/A

Bus Off Count

Indicates the number of times the controller has gone to the bus-off state.

Values: 0 (indicates the controller has not had a bus off error since the last power cycle) or 1 (indicates the controller has gone bus off since the last power cycle)

DeviceNet™ Object: DeviceNet™ (03 hex)

Model and Firmware Version

The last parameter in the *Global setup* menu shows the controller model (D84 for four-loop or D88 for eight-loop), the firmware version (Vxx.xx), and the flash-memory checksum (CS=xxxx).

DeviceNet™ Objects: Model: Identity (01 hex), Firmware Version: N/A, Checksum: N/A.
Input Menu

Use the Input menu to configure the process input:

- Input type
- Engineering units
- Scaling, calibration and filtering.

Input Type

Choose the type of sensor that is connected to the analog input.

Values: See Table 6.7.

Default: J thermocouple (1)

DeviceNet™ Object: Input (64 hex)

Table 6.7 – Input Types and Ranges

<table>
<thead>
<tr>
<th>DISPLAY VALUE</th>
<th>DeviceNet™ VALUE</th>
<th>DESCRIPTION</th>
<th>INPUT RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>J t/c</td>
<td>1</td>
<td>Type J thermocouple</td>
<td>-350 to 1400°F (-212 to 760°C)</td>
</tr>
<tr>
<td>K t/c</td>
<td>2</td>
<td>Type K thermocouple</td>
<td>-450 to 2500°F (-268 to 1371°C)</td>
</tr>
<tr>
<td>T t/c</td>
<td>3</td>
<td>Type T thermocouple</td>
<td>-450 to 750°F (-268 to 399°C)</td>
</tr>
<tr>
<td>S t/c</td>
<td>4</td>
<td>Type S thermocouple</td>
<td>0 to 3200°F (-18 to 1760°C)</td>
</tr>
<tr>
<td>R t/c</td>
<td>5</td>
<td>Type R thermocouple</td>
<td>0 to 3210°F (-18 to 1766°C)</td>
</tr>
<tr>
<td>B t/c</td>
<td>6</td>
<td>Type B thermocouple</td>
<td>150 to 3200°F (66 to 1760°C)</td>
</tr>
<tr>
<td>E t/c</td>
<td>20</td>
<td>Type E thermocouple</td>
<td>-328 to 1448°F (-200 to 787°C)</td>
</tr>
<tr>
<td>RTD</td>
<td>8</td>
<td>RTD</td>
<td>-328.0 to 1150.0°F (-200.0 to 621.1°C)</td>
</tr>
<tr>
<td>process</td>
<td>0</td>
<td>Voltage or current signal, depending upon the hardware configuration. Table 1.1 — Ordering Options on page 16.</td>
<td>User defined. Setting Up Process Variable Retransmit on page 77</td>
</tr>
<tr>
<td>skip</td>
<td>10</td>
<td>Loop is not used for control, does not report alarms, and is not shown on the scanning display.</td>
<td>(none)</td>
</tr>
</tbody>
</table>
Loop Name

Enter a two-character name for the loop. This name is shown on the controller display in place of the loop number.

Values: See Table 6.8.

Default: The loop number (01, 02, 03, and so on.)

DeviceNet™ Object: Input (64 hex)

Table 6.8 – Characters for the Loop Name and Input Units Parameters

<table>
<thead>
<tr>
<th>CHARACTER</th>
<th>DISPLAY VALUES</th>
<th>ASCII VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to Z</td>
<td>A to Z</td>
<td>65 to 90</td>
</tr>
<tr>
<td>0 to 9</td>
<td>0 to 9</td>
<td>48 to 57</td>
</tr>
<tr>
<td>Degree symbol</td>
<td>°</td>
<td>223</td>
</tr>
<tr>
<td>Percent sign</td>
<td>%</td>
<td>37</td>
</tr>
<tr>
<td>Forward slash</td>
<td>/</td>
<td>47</td>
</tr>
<tr>
<td>Space</td>
<td>.</td>
<td>32</td>
</tr>
<tr>
<td>Pound sign</td>
<td>#</td>
<td>35</td>
</tr>
</tbody>
</table>

Input Units

For a thermocouple or RTD input, choose the temperature scale. For a process input, enter a three-character description of the engineering units.

Values: For a process input, see Table 6.8 above. For a thermocouple or RTD input, °F or °C. When setting the units for a thermocouple or RTD input through communications, you must set the first character as a space (32), the second character as the degree symbol (223) and the third character as “C” (67) or “F” (70).

Default: °C for a thermocouple or RTD input, three spaces for a process input

DeviceNet™ Object: Input (64 hex)
Calibration Offset

For a thermocouple or RTD input, enter the offset to correct for signal inaccuracy. A positive value increases the reading and a negative value decreases it. Use an independent sensor or your own calibration equipment to find the offset for your system.

Values: See Table 6.9

Default: 0 or 0.0

Decimal Placement for DeviceNet™: Decimal Placement for Numeric Values on page 46

DeviceNet™ Object: Input (64 hex)

Table 6.9 – Calibration Offset Ranges

<table>
<thead>
<tr>
<th>TYPE OF SENSOR</th>
<th>OFFSET RANGE</th>
<th>°F</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTD</td>
<td>-300.0 to 300.0</td>
<td>-300.0 to 300.0</td>
<td></td>
</tr>
<tr>
<td>J Thermocouple</td>
<td>-300 to 300</td>
<td>-300 to 300</td>
<td></td>
</tr>
<tr>
<td>K Thermocouple</td>
<td>-300 to 300</td>
<td>-300 to 300</td>
<td></td>
</tr>
<tr>
<td>T Thermocouple</td>
<td>-300 to 76</td>
<td>-300 to 300</td>
<td></td>
</tr>
<tr>
<td>B Thermocouple</td>
<td>-300 to 66</td>
<td>-300 to 300</td>
<td></td>
</tr>
<tr>
<td>S Thermocouple</td>
<td>-300 to 66</td>
<td>-300 to 300</td>
<td></td>
</tr>
<tr>
<td>R Thermocouple</td>
<td>-300 to 66</td>
<td>-300 to 300</td>
<td></td>
</tr>
</tbody>
</table>

Reversed Thermocouple Detection

Choose whether to enable polarity checking for thermocouples. If the controller detects a reversed thermocouple, it activates an alarm and sets the loop to manual mode at the power level indicated by the **Sensor fail heat output** or **Sensor fail cool output** parameter in the **Output** menu.

Values: on (1) or off (0). Values in parentheses are for communications

Default: on (1)

DeviceNet™ Object: Input (64 hex)
Display Format

For a process input, choose the range and the number of decimal places for the process variable and related parameters. Choose a precision appropriate for the range and accuracy of the sensor.

Values: See Table 6.10

Default: -999 to 3000 for a process input

DeviceNet™ Object: Input (64 hex)

Table 6.10 – Display Formats

<table>
<thead>
<tr>
<th>DISPLAY VALUE</th>
<th>DeviceNet™ VALUE</th>
<th>MINIMUM PROCESS VARIABLE</th>
<th>MAXIMUM PROCESS VARIABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-999 to 3000</td>
<td>255</td>
<td>-999</td>
<td>3000</td>
</tr>
<tr>
<td>-9999 to 30000</td>
<td>0</td>
<td>-9999</td>
<td>30000</td>
</tr>
<tr>
<td>-999.9 to 3000.0</td>
<td>1</td>
<td>-999.9</td>
<td>3000.0</td>
</tr>
<tr>
<td>-9.999 to 300.00</td>
<td>2</td>
<td>-9.999</td>
<td>300.00</td>
</tr>
<tr>
<td>-9.999 to 30.000</td>
<td>3</td>
<td>-9.999</td>
<td>30.000</td>
</tr>
<tr>
<td>-0.9999 to 3.000</td>
<td>4</td>
<td>-0.9999</td>
<td>3.0000</td>
</tr>
</tbody>
</table>

Input Range High

For a process input, enter the high process variable for input scaling purposes. This value will be displayed when the input signal is at the level set for Input high signal.

This parameter and the Input high signal parameter together define a point on the conversion line for the scaling function. Setting Up a Process Input on page 69

Values: Any value between Input range low and the maximum process variable for the selected display format. See Table 6.10.

Default: 1000. Decimal placement depends upon the value of the Disp format parameter.

Decimal Placement for DeviceNet™: Decimal Placement for Numeric Values on page 46

DeviceNet™ Object: Input (64 hex)
Input High Signal

For a process input, enter the input signal level that corresponds to the value for the *Input range high* parameter. The high signal is a percentage of the full scale input range.

Values: -99.8 to 999.9 (-998 to 9999) percent of full scale. This value must be greater than the value for *Input low signal*. Values in parentheses are for communications.

Default: 100.0% (1000)

Decimal Placement for DeviceNet™: Decimal Placement for Percentage Values on page 46

DeviceNet™ Object: Input (64 hex)

Input Range Low

For a process input, enter the low process variable for input scaling purposes. This value will be displayed when the input signal is at the level set for *Input low signal*.

This value and the value for *Input low signal* together define one of the points on the scaling function's conversion line. Setting Up a Process Input on page 69

Values: Any value between the minimum process variable for the selected display format (see Table 6.10 on the previous page) and the value for *Input range high*.

Default: 0

Decimal Placement for DeviceNet™: Decimal Placement for Numeric Values on page 46

DeviceNet™ Object: Input (64 hex)

Input Low Signal

For a process input, enter the input signal level that corresponds to the low process variable you entered for the *Input range low* parameter. The low signal is a percentage of the full scale input range.

Values: -99.9 to 999.8 (-999 to 9998) percent of full scale. This value must be less than the value for *Input high signal*. Values in parenthesis are for communications.

Default: 0
Decimal Placement for DeviceNet™: Decimal Placement for Percentage Values on page 46

DeviceNet™ Object: Input (64 hex)

Input Filter

Choose the amount of filtering to apply to the process variable before the value is displayed or used in the control calculation. The input filter simulates a resistor-capacitor (RC) filter. Use it to keep the process variable from varying unrealistically.

When enabled, the process variable responds to a step change by going to two-thirds of the actual value within the specified number of scans. One scan is 0.17 seconds for a four-loop controller and 0.33 seconds for a eight-loop controller.

Values: 0 (off) to 255

Default: 3

DeviceNet™ Object: Input (64 hex)

Control Menu

Use the *Control* menu to adjust heat and cool control parameters, including:

- Proportional band, integral and derivative
- Output filter
- Control hysteresis

The controller has separate PID and filter settings for heat and cool outputs. In this section, only the heat screens are shown, but the explanations apply to both the heat and cool parameters.

If you have not set up a Series D8 controller before, or if you do not know which values to enter, Chapter 5: Tuning and Control on page 87, which contains PID tuning constants and useful starting values.
Heat/Cool Proportional Band

Enter the proportional band. A larger value yields less proportional action for a given deviation from set point.

Values: For a thermocouple or RTD input, see Table 6.11. For a process input, 1 to the span of the input range \((\text{Input range high - Input range low})\).

Default: 50 for a thermocouple, RTD or process input.

Decimal Placement for DeviceNet™: Decimal Placement for Numeric Values on page 46

DeviceNet™ Object: Control (66 hex)

Table 6.11 – Proportional Band Values

<table>
<thead>
<tr>
<th>TYPE OF SENSOR</th>
<th>VALUES IN °F</th>
<th>VALUES IN °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>J Thermocouple</td>
<td>1 to 1750</td>
<td>1 to 972</td>
</tr>
<tr>
<td>K Thermocouple</td>
<td>1 to 2950</td>
<td>1 to 1639</td>
</tr>
<tr>
<td>T Thermocouple</td>
<td>1 to 1200</td>
<td>1 to 667</td>
</tr>
<tr>
<td>S Thermocouple</td>
<td>1 to 3200</td>
<td>1 to 1778</td>
</tr>
<tr>
<td>R Thermocouple</td>
<td>1 to 3210</td>
<td>1 to 1784</td>
</tr>
<tr>
<td>B Thermocouple</td>
<td>1 to 3350</td>
<td>1 to 1694</td>
</tr>
<tr>
<td>E Thermocouple</td>
<td>1 to 1776</td>
<td>1 to 987</td>
</tr>
<tr>
<td>RTD</td>
<td>0.1 to 1478.0</td>
<td>0.1 to 821.1</td>
</tr>
</tbody>
</table>

Heat/Cool Integral

Enter the integral constant. A larger value yields less integral action.

Values: 0 (off) to 6000 seconds per repeat

Default: For the Heat integral parameter, 180. For the Cool integral parameter, 60.

DeviceNet™ Object: Control (66 hex)
Heat/Cool Derivative

Enter the derivative constant. A larger value yields greater derivative action.

Values: 0 to 255 seconds
Default: 0
DeviceNet™ Object: Control (66 hex)

Heat/Cool Manual Reset

A process that uses only proportional control settles at a point above or below the set point; it never reaches the set point. This is known as offset or droop. At this parameter, enter the power level required to maintain set point to compensate for this offset.

Values: 0 to 100% (0 to 1000). Values in parentheses are for communications.
Default: 0% (0)
Decimal Placement for DeviceNet™: Decimal Placement for Percentage Values on page 46
DeviceNet™ Object: Control (66 hex)

Heat/Cool Filter

Use this parameter to dampen the response of the heat or cool output. The output responds to a change by going to approximately two-thirds of its final value within the specified number of scans. A larger value results in a slower response to changes in the process variable.

Values: 0 (off) to 255
Default: 3
DeviceNet™ Object: Control (66 hex)
Hysteresis

Specify how much the process variable must deviate from set point before the output can switch between on and off (for on/off control) or switch between heating and cooling (for heat/cool control).

Values: See Table 6.12 for values and decimal placement. For communications the value is always 0 to 5000, see Table 6.12 for implied decimal location.

Default: See Table 6.12

DeviceNet™ Object: Control (66 hex)

<table>
<thead>
<tr>
<th>INPUT TYPE</th>
<th>DISPLAY FORMAT</th>
<th>VALUES</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple</td>
<td>n/a</td>
<td>0 to 500</td>
<td>5</td>
</tr>
<tr>
<td>RTD</td>
<td>n/a</td>
<td>0 to 500.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Process</td>
<td>-999 to 3000</td>
<td>0 to 500</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>-9999 to 30000</td>
<td>0 to 5000</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>-999.9 to 3000.0</td>
<td>0.0 to 500.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>-99.99 to 300.00</td>
<td>0.00 to 50.00</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>-9.999 to 30.000</td>
<td>0.000 to 5.000</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>-0.9999 to 3.0000</td>
<td>0.0000 to 0.5000</td>
<td>0.0050</td>
</tr>
</tbody>
</table>

Restore Automatic Mode

Choose a digital input. If the input is connected to controller common, the loop returns to automatic control mode after a failed sensor is repaired (if it was in automatic mode when the sensor failure occurred).

Values: enabled by D/I1 to enabled by D/I8 (1 to 8) or disabled (0). Values in parentheses are for communications.

Default: disabled (0)

DeviceNet™ Object: Control (66 hex)
Output Menu

Use the Output menu to enable and configure heat and cool outputs.

Heat/Cool Output Type

Choose the output type, or disable the heat or cool output. For more information about each output type, Chapter 5: Tuning and Control on page 87 (If an output is used for process variable retransmit, the disabled option is not available. To disable the output, first disable process variable retransmit for the output. See Heat/Cool Output Retransmit on page 127.)

Values: See Table 6.13

Default: TP (2) for heat, disabled (0) for cool

DeviceNet™ Object: Output (65 hex)

Table 6.13 – Heat and Cool Output Types

<table>
<thead>
<tr>
<th>OUTPUT TYPE</th>
<th>DISPLAY VALUE</th>
<th>DeviceNet™ VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Proportioning</td>
<td>TP</td>
<td>2</td>
<td>The output is switched on and off once during a user-selected cycle time. Within each cycle, the duration of on versus off time is proportional to the percent output power.</td>
</tr>
<tr>
<td>On/Off</td>
<td>on/off</td>
<td>1</td>
<td>The output is either full on or full off.</td>
</tr>
<tr>
<td>None</td>
<td>disabled</td>
<td>0</td>
<td>The output is not used for control and is available for another use, such as an alarm output.</td>
</tr>
<tr>
<td>Three-Phase Distributed Zero Crossing</td>
<td>3P DZC</td>
<td>5</td>
<td>Same as DZC, but for three-phase heaters wired in delta configuration. For grounded Y configuration, use DZC instead.</td>
</tr>
<tr>
<td>Serial DAC</td>
<td>SDAC</td>
<td>4</td>
<td>Use this option if a Serial DAC is connected to the output. If you set the output type to SDAC, the controller assigns digital output 34 as a clock line for the Serial DAC.</td>
</tr>
<tr>
<td>Distributed Zero Crossing</td>
<td>DZC</td>
<td>3</td>
<td>The output on/off state is calculated for every ac line cycle, which means that the output turns on and off multiple times per second. Use DZC with solid state output devices or a Dual DAC. Do not use with electromechanical relays.</td>
</tr>
</tbody>
</table>
Heat/Cool Cycle Time

For a time-proportioning output, enter the cycle time in seconds. For more information about cycle time, Time Proportioning (TP) on page 93.

Values: 1 to 255 seconds
Default: 10
DeviceNet™ Object: Output (65 hex)

Heat/Cool SDAC Signal

For a Serial DAC output, choose the type of output signal that the Serial DAC will provide.

Values: voltage (0) or current (1). Values in parentheses are for communications.
Default: voltage (0)
DeviceNet™ Object: Output (65 hex)

Heat/Cool SDAC Low Signal

For a Serial DAC output, enter the low output signal level for the Serial DAC. The Serial DAC converts 0 percent output from the controller to this value.

Enter high and low values that match the input range of the output device. For instance, if the output device has a 0 to 10VDC input range, then set SDAC low signal to .00VDC and set SDAC hi signal to 10.00VDC.

Values: .00 to 9.90VDC (0 to 990) or 0.00 to 19.90mA (0 to 1990). This value must be less than the value of SDAC hi signal. Values in parentheses are for communications.
Default: .00VDC (0) or 4.00mA (400)
DeviceNet™ Object: Output (65 hex)
Heat/Cool SDAC High Signal

For a Serial DAC output, enter the high output signal level for the Serial DAC. The Serial DAC converts 100 percent output from the controller to the value set here. Enter the high and low values that match the input range of the output device. For instance, if the output device has a 4 to 20mA input range, then set SDAC hi signal to 20mA and set SDAC low signal to 4mA.

Values: 0.10 to 10.00VDC (10 to 1000) or 0.10 to 20.00mA (10 to 2000) This value must be greater than the value of SDAC low signal. Values in parentheses are for communications.

Default: 10.00VDC (1000) or 20.00mA (2000)

DeviceNet™ Object: Output (65 hex)

Heat/Cool Action

Choose the control action for the output. When the action is set to reverse, the output goes up when the process variable goes down. When the action is set to direct, the output goes down when the process variable goes down. Normally, heat outputs are set to reverse action and cool outputs are set to direct action.

Values: reverse (0) or direct (1). Values in parentheses are for communications.

Default: reverse (0) for heat outputs, direct (1) for cool outputs

DeviceNet™ Object: Output (65 hex)

Heat/Cool Power Limit

Use this parameter to limit the output power for a heat or cool output. This limit may be continuous, or it may be in effect for the number of minutes specified at the next parameter.

The power limit only affects loops in automatic mode. It does not affect loops in manual mode.

Values: 0 to 100% (0 to 1000). Values in parentheses are for communications.

Default: 100% (1000)
Decimal Placement for DeviceNet™: Decimal Placement for Percentage Values on page 46

DeviceNet™ Object: Output (65 hex)

Heat/Cool Power Limit Time

Enter the duration of the power limit set at the previous parameter, or choose **continuous** to keep the limit in effect at all times.

If you choose a timed limit, the limit timer restarts whenever the controller powers up and whenever the loop switches from manual to automatic mode.

Values: 1 to 999 minutes (1 to 999) or **continuous** (0). Values in parentheses are for communications.

Default: **continuous** (0)

DeviceNet™ Object: Output (65 hex)

Sensor Fail Heat/Cool Output

A loop will switch to manual mode at the specified output power if one of the following conditions occurs while in automatic mode:

- A failed sensor alarm occurs, or
- The mode override input becomes active. Mode on page 96
- DeviceNet™ connection becomes inactive unexpectedly.

For most applications, this parameter should be set to 0% for both heat and cool outputs.

Values: 0 to 100% (0 to 1000). Values in parentheses are for communications.

Default: 0% (0)

Decimal Placement for DeviceNet™: Decimal Placement for Percentage Values on page 46

DeviceNet™ Object: Output (65 hex)

WARNING! Do not rely solely on the failed sensor alarm to adjust the output in the event of a sensor failure. If the loop is in manual mode when a failed sensor alarm occurs, the output is not adjusted. Install independent external safety devices to shut down the system if a failure occurs.
Open Thermocouple Heat/Cool Output Average

If you set this parameter to on and a thermocouple open alarm occurs, a loop set to automatic control mode will switch to manual mode at the average output prior to the alarm.

Values: on (1) or off (0). Values in parentheses are for communications.

DeviceNet™ Object: Output (65 hex)

Heat/Cool Output Curve

Choose an output curve. If curve 1 or 2 is selected, a PID calculation results in a lower actual output level than the linear output requires. Use curve 1 or 2 if the system has a nonlinear response to the output device.

Values: linear (0), curve 1 (1) or curve 2 (2). Values in parentheses are for communications.

Default: linear (0)

DeviceNet™ Object: Output (65 hex)

![Linear and Nonlinear Outputs](image-url)

Figure 6.3 – Linear and Nonlinear Outputs
Alarms Menu

Use the Alarms menu to configure high alarms, low alarms, and deviation alarms, including:

- Alarm set points
- Alarm outputs
- Alarm behavior
- Alarm hysteresis
- Alarm delay

Alarm High Set Point

Enter the set point at which the high alarm activates. The high alarm activates if the process variable rises above this value. For more information about the high alarm, Alarm High and Alarm Low on page 76

Values: For a thermocouple or RTD input, any value within the input range (Table 6.7 – Input Types and Ranges on page 107). For a process input, any value between the Input range low and Input range high parameters.

Default: 760. Decimal placement depends upon the Input type and Disp format settings.

Decimal Placement for DeviceNet™: Decimal Placement for Numeric Values on page 46

DeviceNet™ Object: Alarm (67 hex)

Alarm High Function

Choose whether the high alarm functions as an alarm or as a boost output, or disable the alarm.

Values: See Table 6.14 below.

Default: off

DeviceNet™ Object: See Alarm Acknowledge on page 133 and Alarm Function on page 134.
Table 6.14 – Alarm Functions

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>No alarm function.</td>
</tr>
</tbody>
</table>
| standard | Alarm is indicated and logged.
| | Latching global alarm is activated.
| | Alarm must be acknowledged to clear.
| | Optional non-latching alarm output is activated. |
| boost | Alarm message on controller display only.
| | Alarm does not require acknowledgement.
| | Non-latching alarm output is activated. Use the alarm set points to control this output for boost control. |

Alarm High Output

```
<01 Alarm high
output none
```

Choose a digital output to activate when the high alarm occurs. You cannot choose an output that is in use for closed-loop control or for the Serial DAC clock.

Values: none (0) or output 1 to 18 (1 to 18). Values in parentheses are for communications.

Default: none (0)

DeviceNet™ Object: Alarm (67 hex)

High Deviation Value

```
<01 HiDeviation
value +5 °C
```

Enter the amount by which the process variable must rise above the set point for the high deviation alarm to occur. For more information, Deviation Alarms on page 76

Values: Table 6.12 – Values for the Control Hysteresis and Deviation Alarm Parameters on page 115

Default: See Table 6.12.

DeviceNet™ Object: Alarm (67 hex)
High Deviation Function

Choose whether the alarm functions as an alarm or as a boost output, or disable the alarm.

Values: Table 6.14 – Alarm Functions on page 122

Default: off

DeviceNet™ Object: Alarm Enable on page 133

High Deviation Output

Choose a digital output to activate when the high deviation alarm occurs. You cannot choose an output that is in use for closed-loop control or for the Serial DAC clock.

Values: none (0) or output 1 to 18 (1 to 18). Values in parentheses are for communications.

Default: none (0)

DeviceNet™ Object: Alarm (67 hex)

Low Deviation Value

Enter the amount by which the process variable must fall below the set point for the low deviation alarm to occur. For more information, Process Alarms on page 75.

Values: Table 6.12 – Values for the Control Hysteresis and Deviation Alarm Parameters on page 115 for values and decimal placement.

Default: Table 6.12

DeviceNet™ Object: Alarm (67 hex)
Low Deviation Function

Choose whether the alarm functions as an alarm or as a boost output, or disable the alarm.

Values: Table 6.14 – Alarm Functions on page 122.

Default: off

DeviceNet™ Object: See Alarm Enable on page 133 and Alarm Function on page 134.

Low Deviation Output

Choose a digital output to activate when the low deviation alarm occurs. You cannot choose an output that is in use for closed-loop control or for the Serial DAC clock.

Values: none (0) or output 1 to 18 (1 to 18). Values in parentheses are for communications.

Default: none (0)

DeviceNet™ Object: Alarm (67 hex)

Alarm Low Set Point

Enter the set point at which the low alarm activates. The low alarm activates if the process variable drops below this value. For more information, see Process Alarms on page 75.

Values: For a thermocouple or RTD input, any value within the input range (see Table 6.7 – Input Types and Ranges on page 107). For a process input, any value between the Input range low and Input range high parameters.

Default: 0

Decimal Placement for DeviceNet™: See Decimal Placement for Numeric Values on page 46.

DeviceNet™ Object: Alarm (67 hex)
Alarm Low Function

Choose whether the alarm functions as an alarm or as a boost output, or disable the alarm.

Values: See Table 6.14.

Default: off

DeviceNet™ Object: See Alarm Acknowledge on page 133 and Alarm Function on page 134.

Alarm Low Output

Choose a digital output to activate when the low alarm occurs. You cannot choose an output that is in use for closed-loop control or for the Serial DAC clock.

Values: none (0) or output 1 to 18 (1 to 18). Values in parentheses are for communications.

Default: none (0)

DeviceNet™ Object: Alarm (67 hex)

Alarm Hysteresis

Enter the amount by which the process variable must return within the alarm limit before a high alarm, low alarm or deviation alarm clears. Use the alarm hysteresis to prevent repeated alarms as the process variable cycles around an alarm limit.

Values: See Table 6.15 on the following page for values and decimal placement. For communications the value is always 0 to 5000.

Default: See Table 6.15.

DeviceNet™ Object: Alarm (67 hex)
Table 6.15 – Values for Alarm Hysteresis

<table>
<thead>
<tr>
<th>INPUT TYPE</th>
<th>DISPLAY FORMAT</th>
<th>VALUES</th>
<th>VALUES VIA COMMUNICATIONS</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple</td>
<td>n/a</td>
<td>0 to 500</td>
<td>0 to 5000</td>
<td>2</td>
</tr>
<tr>
<td>RTD</td>
<td>n/a</td>
<td>0 to 500.0</td>
<td>0 to 5000</td>
<td>2.0</td>
</tr>
<tr>
<td>Process</td>
<td>-999 to 3000</td>
<td>0 to 500</td>
<td>0 to 5000</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-9999 to 30000</td>
<td>0 to 5000</td>
<td>0 to 5000</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>-999.9 to 3000.0</td>
<td>0.0 to 500.0</td>
<td>0 to 5000</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>-99.99 to 300.00</td>
<td>0.00 to 50.00</td>
<td>0 to 5000</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>-9.999 to 30.000</td>
<td>0.000 to 5.000</td>
<td>0 to 5000</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>-0.9999 to 3.0000</td>
<td>0.0000 to 0.5000</td>
<td>0 to 5000</td>
<td>0.0020</td>
</tr>
</tbody>
</table>

Alarm Delay

Use this parameter to delay a failed sensor, process and deviation alarms until the alarm condition has been continuously present for longer than the delay time.

To delay alarms on powerup only, see Power Up Alarm Delay on page 103.

Values: 0 to 255 seconds.

Default: 0

DeviceNet™ Object: Alarm (67 hex)

Process Variable Retransmit Menu

Use the PV retrans menu to configure an output so that it will retransmit the process variable from another loop. For details, see Setting Up Process Variable Retransmit on page 77.

This menu contains parameters for both heat and cool outputs. The sample screens in this section show the heat parameters, but the descriptions apply to both the heat and cool parameters.
Heat/Cool Output Retransmit

Choose the loop that provides the process variable to be retransmitted. For example, in the sample display above, the heat output from loop 1 (01) will retransmit the process variable from loop 2.

Values: none (0), or loop 1 to 4 (1 to 4) for a four-loop controller or loop 1 to 8 (1 to 8) for an eight-loop controller. Values in parentheses are for communications.

Default: none (0)

DeviceNet™ Object: Retransmit (68 hex)

Heat/Cool Retransmit Low Process Variable

Enter the value of the process variable to retransmit as a 0 percent output signal. If the process variable falls below this value, the output will stay at 0 percent.

Values: Any value within the input sensor range; see Table 6.7 – Input Types and Ranges on page 107.

Default: The minimum value in the input sensor range

Decimal Placement for DeviceNet™: See Decimal Placement for Numeric Values on page 46.

DeviceNet™ Object: Retransmit (68 hex)

Heat/Cool Retransmit High Process Variable

Enter the value of the process variable to retransmit as a 100 percent output signal. If the process variable rises above this value, the output will stay at 100 percent.

Values: Any value within the input sensor range; see Table 6.7 – Input Types and Ranges on page 107.

Default: The maximum value in the input sensor range

Decimal Placement for DeviceNet™: See Decimal Placement for Numeric Values on page 46.

DeviceNet™ Object: Retransmit (68 hex).
Cascade Menu

Use the cascade menu to configure cascade control. Use cascade control to calculate the set point of the current loop (the secondary, or outer, loop) based upon the output of another loop (the primary, or inner, loop).

For more information about cascade control, see Setting Up Cascade Control on page 79.

Cascade Primary Loop

Choose the primary loop. The controller uses the output of the primary loop to calculate the set point of the current loop.

Values: none (0), or loop 1 to 4 (1 to 4) for a four loop-controller or 1 to 8 (1 to 8) for an eight-loop controller. You cannot choose the current loop. Values in parentheses are for communications.

Default: none (0)

DeviceNet™ Object: Cascade (6A hex)

Cascade Low Set Point

Enter the set point to use for the current loop when the output of the primary loop is at its minimum value. The set point will never drop below this value.

- If the primary loop has only the heat output enabled, then this value is the set point when the heat output of the primary loop is 0 percent.
- If the primary loop has only the cool output enabled or has the heat and cool outputs enabled, then this value is the set point when the cool output is 100 percent.

Values: For a thermocouple or RTD input, any value within the input range (see Table 6.7). For a process input, any value between the Input range low and Input range high parameters. This value must be less than the Cascade hi SP parameter.

Default: 25 for a thermocouple, RTD or process input.

Decimal Placement for DeviceNet™: See Decimal Placement for Numeric Values on page 46.

DeviceNet™ Object: Cascade (6A hex)
Cascade High Set Point

Enter the set point to use for the current loop when the output of primary loop is at its maximum value. The set point will never exceed this value.

- If the primary loop has only the heat output enabled, or has the heat and cool outputs enabled, this value is the set point when the output of the primary loop is 100 percent.
- If the primary loop has only the cool output enabled, then this value is the set point when the output of the primary loop is 0 percent.

Values: For a thermocouple or RTD input, any value within the input range (see Table 6.7 – Input Types and Ranges on page 107). For a process input, any value between the Input range low and Input range high parameters. This value must be greater than the Cascade low SP parameter.

Default: 25 for a thermocouple, RTD or process input.

Decimal Placement for DeviceNet™: See Decimal Placement for Numeric Values on page 46.

DeviceNet™ Object: Cascade (6A hex)

Ratio Menu

Use the ratio menu to configure ratio control, differential control or remote analog set point. Use these control methods to calculate the set point of the current loop (the ratio loop) based upon the process variable of another loop (the master loop).

For more information about ratio control, see Setting Up Ratio Control on page 82, Setting Up Differential Control on page 84, and Setting Up Remote Analog Set Point on page 85.

Ratio Master Loop

Choose the master loop. The controller uses the process variable of the master loop to calculate the set point of the current loop.

Values: none (0), or loop 1 to 4 (1 to 4) for a four-loop controller or 1 to 8 (1 to 8) for an eight-loop controller. You cannot choose the current loop.
Default: *none* (0)

DeviceNet™ Object: Ratio (69 hex)

Ratio Low Set Point

Enter the lowest allowable set point for the current loop. The set point will never drop below this value, regardless of the result of the ratio calculation.

Values: For a thermocouple or RTD input, any value within the input range (see Table 6.7 – Input Types and Ranges on page 107). For a process input, any value between the *Input range low* and *Input range high* parameters. This value must be less than the *Ratio high SP* parameter.

Default: 25

Decimal Placement for DeviceNet™: See Decimal Placement for Numeric Values on page 46.

DeviceNet™ Object: Ratio (69 hex)

Ratio High Set Point

Enter the highest allowable set point for the current loop. The set point will never exceed this value, regardless of the result of the ratio calculation.

Values: For a thermocouple or RTD input, any value in the input sensor range; see Table 6.7 – Input Types and Ranges on page 107. For a process input, any value from *Input range low to Input range high*. This value must be greater than the *Ratio low SP* parameter.

Default: 25

Decimal Placement for DeviceNet™: See Decimal Placement for Numeric Values on page 46.

DeviceNet™ Object: Ratio (69 hex)

Control Ratio

Enter the factor by which to multiply the process variable of the master loop to calculate the set point of the ratio loop.
Values: .1 to 999.9 (1 to 9999). Values in parentheses are for communications (values are in tenths).
Default: 1.0 (10) for a thermocouple, RTD or process input.
DeviceNet™ Object: Ratio (69 hex)

Ratio Set Point Differential

Enter the value to add to the ratio calculation before using it as the set point.
Values: -9999 to 9999. Decimal placement depends upon the Input type and Disp format values in the Input menu.
Default: 0
Decimal Placement for DeviceNet™: See Decimal Placement for Numeric Values on page 46.
DeviceNet™ Object: Ratio (69 hex)

I/O Tests Menu

Use the I/O tests menu to test the following:
- Digital inputs
- Digital outputs
- Keypad

Digital Inputs

This parameter indicates the states of the eight digital inputs. A 1 indicates that the input is connected to controller common (on). A 0 indicates an open circuit (off).
To test an input, short it to controller common. When the input is shorted, its input state should be 1. For detailed instructions, see Digital Input Test on page 31.
The controller display shows the states of digital inputs 1 to 8 from left to right.
Values: 0 if the input is off, 1 if the input is on
DeviceNet™ Object: Global (6B hex)
Keypad Test

To test the keypad, press \(\text{\ss} \). This screen will appear:

To test a key, press it. If the key is working properly, an icon for that key appears.

When you are done testing the keypad, press \(\text{\ss} \) to return to the Keypad test parameter.

DeviceNet™ Object: None

Display Test

Displays two screens with alternate pixels lit. Press \(\text{\ss} \) to enter test, press \(\text{\ss} \) or \(\text{\ss} \) to switch pattern.

Press \(\text{\ss} \) to end the test.

DeviceNet™ Object: None

Test Digital Output 1 to 20

Use the Test D/O parameter to manually toggle a digital output on and off. Choose on to sink the current from the output to the controller common. Choose off to stop the current flow. For instructions, see Digital Output Test on page 30. You cannot toggle an output that is enabled for control.

Values: off (0) or on (1)
Default: off (0)
DeviceNet™ Object: Global (6B hex)
Parameters Only Available via Communications

These parameters are available only via communications. They are not accessible through the controller keypad.

Alarm Acknowledge

Indicates whether an alarm has been acknowledged. To acknowledge an alarm, clear the bit for that alarm. Table 6.17 – Bit Positions for Alarm Status and Alarm Acknowledge on page 134 shows how what bit corresponds to each alarm. This parameter is available only via communications.

Values: Unacknowledged (1) or acknowledged (0)

DeviceNet™ Object: Alarm (67 hex)

Alarm Enable

Enable or disable an alarm. Table 6.16 below shows the bit to set or read for each alarm. This parameter is available only via communications.

Values: Disabled (0) or enabled (1)

Default: Disabled (0)

DeviceNet™ Object: Alarm (67 hex)

Table 6.16 – Bit Positions for Alarm Enable and Alarm Function

<table>
<thead>
<tr>
<th>ALARM</th>
<th>BIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Deviation Alarm</td>
<td>Third</td>
</tr>
<tr>
<td>High Deviation Alarm</td>
<td>Fourth</td>
</tr>
<tr>
<td>Alarm Low</td>
<td>Fifth</td>
</tr>
<tr>
<td>Alarm High</td>
<td>Sixth</td>
</tr>
</tbody>
</table>

NOTE! All other bits, 0, 1, 2, and 7 to 16 are always 0. You must transmit a complete 2-byte word to set any alarm parameter for a loop. You may want to read the alarm settings before constructing the word to set an alarm parameter.

NOTE! The least significant bit is considered the first bit and the most significant is considered the sixteenth bit. See Bit-Wise Values on page 46.
Alarm Function
Choose whether an alarm behaves as a standard alarm or as a boost output. For descriptions of the standard and boost functions, see Table 6.14 – Alarm Functions on page 122. Table 6.16 – Bit Positions for Alarm Enable and Alarm Function on page 133 shows the bit to read for each alarm.

This parameter is available only via communications.

Values: Standard alarm (0) or boost output (1)

Default: Standard alarm (0)

DeviceNet™ Object: Alarm (67 hex)

Alarm Status
Indicates whether an alarm is active. Table 6.17 below shows the bit to read for each alarm. This parameter is available only via communications.

Values: Not active (0) or active (1)

DeviceNet™ Object: Alarm (67 hex)

Table 6.17 – Bit Positions for Alarm Status and Alarm Acknowledge

<table>
<thead>
<tr>
<th>ALARM</th>
<th>BIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Deviation Alarm</td>
<td>Third</td>
</tr>
<tr>
<td>High Deviation Alarm</td>
<td>Fourth</td>
</tr>
<tr>
<td>Alarm Low</td>
<td>Fifth</td>
</tr>
<tr>
<td>Alarm High</td>
<td>Sixth</td>
</tr>
<tr>
<td>Thermocouple Reversed</td>
<td>Seventh</td>
</tr>
<tr>
<td>Thermocouple Shorted</td>
<td>Eighth</td>
</tr>
<tr>
<td>Thermocouple Open</td>
<td>Ninth</td>
</tr>
<tr>
<td>RTD Open</td>
<td>Tenth</td>
</tr>
<tr>
<td>RTD Fail</td>
<td>Eleventh</td>
</tr>
</tbody>
</table>

Ambient Sensor Reading
This read-only parameter indicates the temperature measured by the cold-junction compensation sensor located near the analog input terminal block.

This parameter is available only for communications programs.

Values: Temperature in tenths of a degree Fahrenheit. To convert to Celsius, use the formula

°C = 5/9 (°F - 32).

DeviceNet™ Object: Global (6 hex)
Table 6.18 – System Status Bits

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DESCRIPTION</th>
<th>VALUES</th>
<th>DeviceNet™ OBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Status</td>
<td>Indicates whether the values in RAM have been corrupted while the power has been off.</td>
<td>0: No corruption detected</td>
<td>Global (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Data corrupted</td>
<td></td>
</tr>
<tr>
<td>Hardware Ambient Status</td>
<td>Indicates whether the ambient temperature is within the controller’s operating range. If the ambient is out of range, the controller sets all loops to manual mode at 0 percent power.</td>
<td>0: Within range</td>
<td>Global (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Outside of range</td>
<td></td>
</tr>
<tr>
<td>Hardware Offset Status</td>
<td>Indicates whether the zero self-calibration measurement falls within acceptable limits.</td>
<td>0: In calibration</td>
<td>Global (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Out of calibration</td>
<td></td>
</tr>
<tr>
<td>Hardware Gain Status</td>
<td>Indicates whether the full scale self-calibration measurement falls within acceptable limits.</td>
<td>0: In calibration</td>
<td>Global (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Out of calibration</td>
<td></td>
</tr>
</tbody>
</table>

Heat/Cool Output Action for Watchdog Inactivity Fault

Action on heat and cool outputs when a DeviceNet™ Watchdog Inactivity Timeout is detected.

Values: See Table 6.19 below

Default: 0

DeviceNet™ Object: Output (65 hex)

Table 6.19 – DeviceNet™ Value for Watchdog Inactivity Fault

<table>
<thead>
<tr>
<th>DeviceNet™ VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>If not in Manual Mode will then put in Manual Mode, with output set to value in Sensor Fail Heat and Cool Output.</td>
</tr>
<tr>
<td>1</td>
<td>Do Nothing (continue operating output).</td>
</tr>
</tbody>
</table>
Chapter 7: Troubleshooting and Reconfiguring

This chapter explains how to troubleshoot and reconfigure the controller.

When There is a Problem

The controller is only one part of your control system. Often, what appears to be a problem with the controller is really a problem with other equipment, so check these things first:

- The controller is installed correctly. (See the Installation chapter.)
- Sensors, such as thermocouples and RTDs, are installed correctly and working.

NOTE! If you suspect your controller has been damaged, do not attempt to repair it yourself, or you may void the warranty.

If the troubleshooting procedures in this chapter do not solve your system’s problems, call Application Engineering for additional troubleshooting help. If you need to return the unit to Watlow for testing and repair, Customer Service will issue you an RMA number. See Return Material Authorization (RMA) on page 3.

CAUTION! Before trying to troubleshoot a problem by replacing your controller with another one, first check the installation. If you have shorted sensor inputs to high voltage lines or a transformer is shorted out, and you replace the controller, you will risk damage to the new controller.

If you are certain the installation is correct, you can try replacing the controller. If the second unit works correctly, then the problem is specific to the controller you replaced.

Troubleshooting the Controller

A problem may be indicated by one or more of several types of symptoms:

- A process alarm
- A failed sensor alarm
- A system alarm
- Unexpected or undesired behavior

The following sections list symptoms in each of these categories and suggest possible causes and corrective actions.
Process Alarms
When a process alarm occurs, the controller switches to the single-loop display for the loop with the alarm and displays the alarm code (see Alarm Displays on page 63).

Possible Causes of a Process Alarm
In a heating application, a low alarm or low deviation alarm may indicate one of the following:

- The heater has not had time to raise the temperature.
- The load has increased and the temperature has fallen.
- The control mode is set to manual instead of automatic.
- The heaters are not working because of a hardware failure.
- The sensor is not placed correctly and is not measuring the load's temperature.
- The alarm settings are too tight. The process variable varies by more than the alarm limits because of load changes, lag or other system conditions.
- The system is so poorly tuned that the temperature is cycling about set point by more than the alarm set point.

NOTE! In cooling applications, similar issues cause high alarms.

In a heating application, a high alarm or high deviation alarm may indicate one of the following:

- The process set point and high alarm set point have been lowered and the system has not had time to cool to within the new alarm setting.
- The controller is in manual mode and the heat output is greater than 0 percent.
- The load has decreased such that the temperature has risen.
- The heater is full-on because of a hardware failure.
- The system is so poorly tuned that the temperature is cycling about set point by more than the alarm set point.

NOTE! In cooling applications, similar issues cause high alarms.

Responding to a Process Alarm
Your response to an alarm depends upon the alarm function setting, as explained in Table 7.1.

Table 7.1 – Operator Response to Process Alarms

<table>
<thead>
<tr>
<th>ALARM FUNCTION</th>
<th>OPERATOR RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost</td>
<td>The operator does not need to acknowledge the alarm. The alarm clears automatically when the process variable returns within limits.</td>
</tr>
<tr>
<td>Standard</td>
<td>Acknowledge the alarm by pressing on the keypad or via communications. The alarm clears after the operator acknowledges it and the process variable returns within the limits.</td>
</tr>
</tbody>
</table>
Ambient Warning

The Ambient Warning indicates that the controller is within 5°C of its operating temperature limits. If an Ambient Warning occurs, the alarm code AW (flashing) is displayed, and the global alarm output is turned on. Acknowledging the alarm turns off the global alarm output. The error clears when the condition no longer exists and the alarm has been acknowledged.

If the controller displays the AW alarm code:

1. Acknowledge the alarm.
2. Adjust the ambient temperature to a more appropriate level.

Failed Sensor Alarms

When a failed sensor alarm occurs, the controller switches to the single loop display for the loop with the alarm and displays an alarm code (see Alarm Displays on page 63).

A failed sensor alarm clears once it has been acknowledged and the sensor is repaired. For more information about the causes of failed sensor alarms, see Failed Sensor Alarms on page 73.

System Alarms

If the controller detects a hardware problem, it displays an alarm message, and with the exception of the Low Power alarm, turns on the global alarm output. The global alarm remains on until the alarm is acknowledged. The message persists until the condition is corrected and the alarm is acknowledged.

The D8 displays the following system alarm messages:

- **Low power**: See Low Power on page 140.
- **Battery dead**: See Battery Dead on page 140.
- **H/W error: Ambient**: See H/W Error: Ambient on page 141.
- **H/W error: Gain**: See H/W Error: Gain or Offset on page 141.
- **H/W error: Offset**: See H/W Error: Gain or Offset on page 141.

Other Behaviors

Table 7.2 indicates potential problems with the system or controller and recommends corrective actions.

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>POSSIBLE CAUSES</th>
<th>RECOMMENDED ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicated temperature not as expected</td>
<td>Controller not communicating</td>
<td>See Checking Analog Inputs on page 142.</td>
</tr>
<tr>
<td></td>
<td>Sensor wiring incorrect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise</td>
<td></td>
</tr>
<tr>
<td>D8 display is not lit</td>
<td>Power connection incorrect</td>
<td>Check wiring and service. See Wiring the Power Supply on page 28.</td>
</tr>
<tr>
<td></td>
<td>failed flash memory chip</td>
<td>Replace the flash memory chip. See Chapter 7: Troubleshooting and Reconfiguring on page 136.</td>
</tr>
<tr>
<td></td>
<td>D8 damaged or failed</td>
<td>Return the D8 for repair. See Return Material Authorization (RMA) on page 3.</td>
</tr>
<tr>
<td>SYMPTOM</td>
<td>POSSIBLE CAUSES</td>
<td>RECOMMENDED ACTION</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>D8 display is lit, but keys do not work</td>
<td>Keypad locked</td>
<td>See Keys Do Not Work on page 142.</td>
</tr>
<tr>
<td></td>
<td>Unacknowledged alarm</td>
<td>An alarm condition exists and has not been acknowledged. See How to Acknowledge an Alarm on page 64.</td>
</tr>
<tr>
<td></td>
<td>D8 damaged or failed</td>
<td>Return the D8 for repair. See Return Material Authorization (RMA) on page 3.</td>
</tr>
<tr>
<td>Control mode of one or more loops changes from automatic to manual</td>
<td>Failed sensor</td>
<td>Check the display or HMI software for a failed sensor message.</td>
</tr>
<tr>
<td></td>
<td>BCD job selection feature loaded a different job</td>
<td>Check whether the new job was supposed to be loaded. If not, check the BCD job load setup: Check the settings of the BCD job load parameters in the Global setup menu. Use the Digital inputs parameter in the I/O tests menu to test the BCD job load input(s). Check the device that is used to activate job selection.</td>
</tr>
<tr>
<td>All loops are in manual mode at 0 percent power</td>
<td>Intermittent power</td>
<td>Check wiring and service. See Wiring the Power Supply on page 28. Use a separate dc supply for the controller. Provide backup power (uninterruptible power system). In the Global menu, set the Power up loop mode parameter to from memory if safe for your application. See Power Up Loop Mode on page 103.</td>
</tr>
<tr>
<td></td>
<td>Hardware failure</td>
<td>Check the controller display for a hardware alarm. See System Alarms on page 138.</td>
</tr>
<tr>
<td>Controller does not behave as expected</td>
<td>Corrupt or incorrect values in RAM</td>
<td>Clear the RAM. See Clearing the RAM on page 145.</td>
</tr>
</tbody>
</table>

Reading the DeviceNet Indicator Lights

The Module Status Indicator Light indicates whether or not the device has power and is operating properly. The following chart is the definition of valid states available to this indicator:

Table 7.3 – Module Status Indicator States and Descriptions

<table>
<thead>
<tr>
<th>DEVICE STATE</th>
<th>INDICATOR LIGHT STATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Off</td>
<td>Off</td>
<td>No power applied to device.</td>
</tr>
<tr>
<td>Device Self-Test</td>
<td>Flashing Green-Red</td>
<td>Device is in Self-Test.</td>
</tr>
<tr>
<td>Device Operational</td>
<td>Green</td>
<td>Device is operating normally.</td>
</tr>
<tr>
<td>Unrecoverable Fault</td>
<td>Red</td>
<td>Device has detected an unrecoverable fault. All module level faults are considered unrecoverable.</td>
</tr>
</tbody>
</table>
Table 7.4 – Network Status Indicator Light

<table>
<thead>
<tr>
<th>INDICATOR LIGHT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>The device is not online. The device has not completed the duplicate MAC ID test yet. The device may not be powered. Look at Table 2.10, Module Status Indicator Light.</td>
</tr>
<tr>
<td>Green</td>
<td>The device is online and has connections in the established state. For a Group 2 Only device it means that the device is allocated to a Master.</td>
</tr>
<tr>
<td>Red</td>
<td>Failed communication device. The device has detected an error that has rendered it incapable of communicating on the network (Duplicate MAC ID, or Bus-off).</td>
</tr>
<tr>
<td>Flashing Green</td>
<td>The device is online, but no connection has been allocated or an explicit connection has timed out.</td>
</tr>
<tr>
<td>Flashing Red</td>
<td>A poll connection has timed out.</td>
</tr>
</tbody>
</table>

Corrective and Diagnostic Procedures

The following sections detail procedures you may use to diagnose and correct problems with the controller.

Low Power

If the controller displays *Low power* or the display is not lit:

1. Turn the power to the controller off, then on again.
2. If the *Low power* alarm message returns, check that the power supplied to the controller is at least 12.0VDC at 1 A. See *Wiring the Power Supply on page 28*.
3. If power is correct and the alarm message persists, make a record of all controller settings. Then, clear the RAM. See *Clearing the RAM on page 145*.
4. If the alarm is not cleared, contact your supplier for further troubleshooting guidance. See *Return Material Authorization (RMA) on page 3*.

Battery Dead

The Battery dead alarm indicates that the battery is not functioning correctly. This alarm occurs upon power-up only. The alarm indicates that values stored in memory may have been corrupted because of battery failure and should be restored to factory defaults.

If the Battery Dead alarm occurs, the controller displays an alarm message and the global alarm output turns on. Acknowledging the alarm restores all settings to factory defaults and turns off the global alarm output.

CAUTION! Acknowledging this alarm restores all settings to factory defaults.
NOTE! The controller retains its settings when powered. The battery is required to keep the settings in memory only while the controller is not powered.

To replace the battery:
1. Contact your supplier to obtain a replacement battery.
2. See Removing or Replacing the Battery on page 147.

If you must use the controller with the failed battery:
1. Acknowledge the Battery Dead alarm. This restores all setting to factory defaults.
2. Using your record of controller settings, re-enter your settings.

H/W Error: Gain or Offset

Gain and Offset alarms indicate that a hardware error is preventing accurate measurements. If a Gain or Offset alarm occurs, the control outputs are turned off, an alarm message is displayed and the global alarm output turns on. Acknowledging the alarm turns off the global alarm output. The error clears when the condition no longer exists and the alarm has been acknowledged.

If the controller displays *H/W error: Gain or H/W error: Offset*:
1. Switch the power to the controller off, then on again.
2. If the alarm persists, make a record of all controller settings, then clear the RAM. See Clearing the RAM on page 145.
3. If the alarm is not cleared, contact your supplier for further troubleshooting guidelines. See Return Material Authorization (RMA) on page 3.

NOTE! If the controller has failed, it is likely that it was damaged by excessive voltage or noise. Before replacing the controller, troubleshoot for noise and ground loops.

H/W Error: Ambient

The *H/W error: Ambient* alarm indicates that the ambient sensor in the D8 is reporting that the temperature around the controller is outside of the acceptable range of 0 to 50°C. This alarm can also occur if there is a hardware failure.

If an *H/W Error: Ambient* alarm occurs, the control outputs are turned off, an alarm message is displayed with the ambient temperature and the global alarm output turns on. Acknowledging the alarm turns off the global alarm output. The error clears when the condition no longer exists and the alarm has been acknowledged.

If the controller displays *H/W error: Ambient*:
1. Acknowledge the alarm and check the ambient air temperature near the controller. Adjust ventilation, cooling or heating so that the temperature around the controller is 0 to 50°C. If the unit is functioning correctly, the alarm will clear automatically when the ambient temperature is within range.
2. If the ambient temperature is within range and the alarm persists, reseat the board assembly:
a. Switch off power to the controller.

b. Remove the board assembly from the D8 housing. See Replacing the EPROM on page 145, steps 2 to 5.

c. Reseat the board assembly and reassemble the controller. Reverse the steps refered to above to reseat.

d. Switch on power to the controller.

3. If the alarm persists, make a record of all controller settings, then clear the RAM. See Clearing the RAM on page 145.

4. If the alarm is not cleared, contact your supplier for further troubleshooting guidelines. See Return Material Authorization (RMA) on page 3.

NOTE! If the controller has failed, it is likely that it was damaged by excessive voltage or noise. Before replacing the controller, troubleshoot for noise and ground loops.

Keys Do Not Work

If the D8 seems to function but one or more keys do not work, check the following:

- If the key does not work, but other keys work, then the keypad is probably locked. Unlock the keypad according to the instructions in Keypad Lock on page 104.

- Check whether there is an unacknowledged alarm. The keys will not work for anything else until all alarms are acknowledged. To acknowledge an alarm, press .

Checking Analog Inputs

1. If the process variable read via communications does not agree with the process variable on the controller display, verify that the controller is communicating. See Reading the DeviceNet Indicator Lights on page 139.

2. If the process variable indicated on the controller display is incorrect:
 a. Verify that you have selected the correct input type for the affected loops.
 b. Verify that sensors are properly connected.

3. If the sensors are correctly connected, with power on to the heaters check for high common mode voltage:
 a. Set a voltmeter to measure volts ac.
 b. Connect the negative lead to a good earth ground.
 c. One by one, check each input for ac voltage by connecting the positive lead on the voltmeter to the positive and negative sensor input connections. The process variable should indicate ambient temperature. If it does not, contact your supplier to return the unit for repair. See Return Material Authorization (RMA) on page 3.

NOTE! Noise in excess of 1VAC should be eliminated by correctly grounding the D8. See Wiring the Power Supply on page 28.
4. Verify the sensors:
 - For thermocouples, remove the thermocouple leads and use a digital voltmeter to measure the resistance between the positive and negative thermocouple leads. A value of 2 to 20Ω is normal. Readings in excess of 20Ω indicate a problem with the sensor.
 - For RTDs, measure between the IN+ and IN- terminals of TB1. RTD inputs should read between 20 and 250Ω.

5. To verify that the controller hardware is working correctly, check any input (except an RTD) as follows:
 a. Disconnect the sensor wiring.
 b. In the Input menu, set the Input type parameter to J thermocouple.
 c. Place a short across the input. On the loop that you are testing, the controller should indicate the ambient temperature.

Earth Grounding
If you suspect a problem with the ac ground or a ground loop:
 - Measure for ac voltage between ac neutral and panel chassis ground. If ac voltage is above 2VAC, then there may be a problem with the ac power wiring. This should be corrected per local electrical codes.
 - With ac power on, measure for ac voltage that may be present between control panels’ chassis grounds. Any ac voltage above 2VAC may indicate problems with the ac ground circuit.
 - With the heater power on, check for ac voltage on thermocouples. A control output providing power to the heaters will increase the ac voltage if there is heater leakage and an improper grounding circuit. Measure from either positive or negative thermocouple lead to ac ground. AC voltage above 2VAC may indicate the ground lead is not connected to the D8 TB2/J2 ground terminal.

If the above tests indicate proper ac grounding but the controller is indicating incorrect temperatures or process readings:
 - Verify which type of sensor is installed and that the Input type parameter in the Input menu is set accordingly.
 - For an RTD or process input, check that the correct input scaling resistors are installed (see Scaling Resistors on page 148) and check the input scaling parameter settings (see Setting Up a Process Input on page 69).
 - If readings are erratic, look for sources of electrical noise. See Noise Suppression on page 26.
 - Eliminate possible ground loops. See Ground Loops on page 27.
 - Contact your supplier for further troubleshooting guidance.
Testing Control Output Devices

Connect the solid-state relay (SSR) control terminals to the D8 control output and connect a light bulb (or other load that can easily be verified) to be switched by the SSR’s outputs. Put the loop in manual mode and set the output to 100 percent. The ac load should turn on.

Do not attempt to measure ac voltage at the output terminals of the SSR. Without a load connected, the SSR output terminals do not turn off. This makes it difficult to determine whether the SSR is actually working. Measure the voltage across a load or use a load that can be visually verified, such as a light bulb.

Testing the TB18 and TB50

1. Turn on power to the controller.
2. Measure the +5VDC supply at the TB18 or TB50. The voltage should be +4.75 to +5.25VDC:
 a. Connect the voltmeter’s common lead to TB18 terminal 2 or TB50 terminal 3.
 b. Connect the voltmeter’s positive lead to the TB18 or TB50 terminal 1.

Testing Control and Digital Outputs

1. Switch off power to the controller.
2. Disconnect any output wiring on the output to be tested.
3. Connect a 500Ω to 100 kΩ resistor between the +5V terminal (TB18 or TB50 terminal 1) and the output terminal you want to test.
4. Connect the voltmeter’s common lead to the output terminal, and connect the voltmeter’s positive lead to the +5V terminal.
5. Restore power to the controller.
6. If you are testing a control output, turn the output on and off by setting the loop to 100 percent and 0 percent output power (see Changing the Control Mode and Output Power on page 66). When the output is off (0 percent), the output voltage should be less than 1V. When the output is on (100 percent), the output voltage should be between +4.75 and +5.25V.
7. If you are testing a digital output not used for control, use the I/O tests menu to turn the output on and off. See Test Digital Output 1 to 20 on page 132.

Testing Digital Inputs

1. Switch off power to the controller.
2. Disconnect any system wiring from the input to be tested.
3. Restore power to the controller.
4. Go to the Digital inputs parameter in the I/O tests menu.
5. Attach a wire to the terminal of the digital input to test. When the wire is connected only to the digital input terminal, the Digital inputs parameter should show that the input is off (0). When you connect the other end of the wire to controller common (TB50 terminal 3), the Digital inputs parameter should show that the input is on (1).
Clearing the RAM

Clearing the random access memory (RAM) returns all controller settings to their defaults. All stored jobs are also cleared from controller memory.

To clear the RAM:

1. Make a record of all controller settings.
2. Switch off power to the controller.
3. Press and hold ◀.
4. Switch on power to the controller while still holding ◀.
5. When you see the prompt Clear RAM?, release ◀ and press ▶.
6. Restore the controller settings.

NOTE! If your controller does not have a keypad and display, you can clear the RAM by powering the controller up with pins 1 and 6 on the keypad header (J3 on the bottom circuit card) shorted. After clearing the RAM, power down the controller and remove the jumper wire from the keypad header before putting the controller back in service.

Replacing the EPROM

Replacing the EPROM involves minor mechanical disassembly and reassembly of the controller. You will need a Phillips screwdriver and an IC extraction tool or a small, standard, jeweler’s screwdriver.

CAUTION! The EPROM and other components are sensitive to damage from electrostatic discharge (ESD). To prevent ESD damage, use an ESD wrist strap or other antistatic device.

NOTE! Replacing the EPROM with another version results in full erasure of RAM. Make a record of all parameters before changing the EPROM.

1. Make a record of the controller’s settings.
2. Power down the controller.
3. Remove the four screws from the sides of the controller front panel.
4. Remove the electronics assembly from the case, as shown in Figure 7.1.

Figure 7.1 — Remove Board Assembly from Case
5. Unplug the front panel overlay ribbon cable from the connector on the processor board (the bottom one in the stack of two boards).

6. Pull back the arms that latch the two boards in the carrier at side with the ribbon cable and rotate the boards out of the carrier as shown in Figure 7.3

7. Remove the two plastic standoffs that connect the analog (top) board to the processor (bottom) board and lift the analog board off the processor board.

8. Locate the EPROM on the processor board. The EPROM is a 32-pin socketed chip that is labeled with the model, version and checksum.
9. Remove the existing EPROM from its socket with an IC extraction tool or a jeweler’s flathead screwdriver.

10. Carefully insert the new EPROM into the socket. Make sure that the chip is oriented so that its notch fits in the corresponding corner of the socket.

11. Reverse steps 3 through 7 to reassemble the unit. However, at step 6 insert the two-board assembly straight in to the carrier making sure all four arms latch on the boards.

12. Power up the controller.

13. Re-enter the controller settings, if necessary.

Removing or Replacing the Battery

The lithium battery in the battery-backed RAM module on the processor board should be removed and disposed of properly if decommissioning the controller. It may also be replaced, if needed during the life of the controller.

To remove the battery:

1. Follow steps 1 to 7 of the procedure Replacing the EPROM on page 145, to access the processor board.

2. Locate the battery backed RAM module. See Figure 7.7 — Battery-Backed RAM Module on the Processor Board on page 148.

3. Insert a small flat blade screwdriver vertically into the slot on one side of the RMA module.

4. Angle the screwdriver handle toward the center of the RAM chip gently until the side with the slot unlatches and the battery holder comes off the module.

5. Remove the battery from the holder.

6. Follow local applicable recycling requirements for Coin Cell Lithium type BR-1632 Battery.
To replace the battery, if desired:

1. Align the contact springs on the battery holder with the contacts on the RAM module.
2. Hook the battery holder flange under the RAM module’s base board.
3. Fit the alignment ribs on the battery holder into the alignment notches in the RAM module’s base board.
4. Push down and forward and latch the battery holder on the module.
5. To reassemble the unit reverse steps 3 through 7 of the procedure Replacing the EPROM on page 145. However, at step 6 insert the two-board assembly straight in to the carrier making sure all four arms latch on the boards.
6. Power up the controller.
7. Re-enter the controller settings, if necessary.

Scaling Resistors

Resistors are installed for all inputs on the D8. Inputs with signal ranges between -10 and +60mV use 0Ω resistors in the RC position only. All other input signals require special input scaling resistors.

NOTE! Scaling resistors cannot be changed in the field. For input types other than thermocouples, the controller must be ordered with and factory configured with scaling resistors.

Input Circuit

The D8 can accept thermocouple, mVDC, VDC, mADC and RTD inputs. Unless ordered with special inputs the controller accepts only signals within the standard range -10 to 60mVDC.

To accommodate other signals, the input circuit must be modified. When configured for thermocouple inputs, 0Ω resistors are installed in all RC locations. To accommodate voltage signals outside the standard range, milliamp current signals or RTDs, resistors are added or replaced to scale the signals to the standard range.

Figure 7.8 shows the input circuit for one analog input. See Current Inputs on page 149 through RTD Inputs on page 150 for specific instructions and resistor values for voltage, current and RTD inputs.
Current Inputs

Each current input has a 3.0Ω resistor in the resistor pack (RP) location for the input. Note the resistor pack locations have three through-holes. The resistors are installed as shown in the illustration below.

Table 7.5 – Resistor Values for Current Inputs

<table>
<thead>
<tr>
<th>INPUT RANGE</th>
<th>RESISTOR VALUE RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 20mA</td>
<td>3.0Ω</td>
</tr>
</tbody>
</table>

Resistor tolerance: ±0.1%

Voltage Inputs

Each voltage input has two scaling resistors installed: one at the resistor pack (RP) and one at RD for the input. The values of the resistors determines the input range. Note the resistor pack locations have three through-holes. The resistors are installed as shown in the illustration below.

Table 7.6 – Resistor Locations for Current Inputs

<table>
<thead>
<tr>
<th>LOOP</th>
<th>RESISTOR LOCATION RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RP1</td>
</tr>
<tr>
<td>2</td>
<td>RR2</td>
</tr>
<tr>
<td>3</td>
<td>RP3</td>
</tr>
<tr>
<td>4</td>
<td>RP4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOOP</th>
<th>RESISTOR LOCATION RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>RP5</td>
</tr>
<tr>
<td>6</td>
<td>RP6</td>
</tr>
<tr>
<td>7</td>
<td>RP7</td>
</tr>
<tr>
<td>8</td>
<td>RP8</td>
</tr>
</tbody>
</table>
INPUT RANGE

<table>
<thead>
<tr>
<th>INPUT RANGE</th>
<th>RESISTOR VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5VDC</td>
<td>RC: 39.2kΩ</td>
</tr>
<tr>
<td>0 to 10VDC</td>
<td>RC: 49.9kΩ</td>
</tr>
</tbody>
</table>

Resistor tolerance: ±0.1%

Table 7.8 – Resistor Locations for Voltage Inputs

<table>
<thead>
<tr>
<th>LOOP</th>
<th>RESISTOR LOCATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R58 RP1</td>
</tr>
<tr>
<td>2</td>
<td>R56 RP2</td>
</tr>
<tr>
<td>3</td>
<td>R54 RP3</td>
</tr>
<tr>
<td>4</td>
<td>R52 RP4</td>
</tr>
<tr>
<td>5</td>
<td>R50 RP5</td>
</tr>
<tr>
<td>6</td>
<td>R48 RP6</td>
</tr>
<tr>
<td>7</td>
<td>R46 RP7</td>
</tr>
<tr>
<td>8</td>
<td>R44 RP8</td>
</tr>
</tbody>
</table>

RTD Inputs

Each RTD input has three scaling resistors installed: one each at RA, RB and RC for the input. RA and RB are a matched pair of resistors installed in the resistor pack (RP) location as shown in the illustration below.

Resistor values:
- RA/RB: 25kΩ
- RC: 18.2Ω

Resistor tolerances:
- RA/RB: Matched to 0.02% (±5 ppm/°C) with absolute tolerance of 0.1% (±25 ppm/°C)
- RC: Accurate to 0.05% (±5 ppm/°C)

Table 7.9 – Resistor Locations for RTD Inputs
Scaling and Calibration

The controller provides offset calibration for thermocouple, RTD, and other fixed ranges, and offset and span (gain) calibration for process inputs. In order to scale the input signal, you must:

1. Have appropriate scaling resistors installed.
2. Enter the input range at the Disp format parameter in the Input menu. The smallest possible range is -.9999 to 3.0000; the largest possible range is -9999 to 30000.
3. Enter the appropriate scaling values for your process. See Setting Up a Process Input on page 69.

LOOP RESISTOR LOCATIONS

<table>
<thead>
<tr>
<th>LOOP</th>
<th>RA/RB</th>
<th>RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RP1</td>
<td>R57</td>
</tr>
<tr>
<td>2</td>
<td>RP2</td>
<td>R55</td>
</tr>
<tr>
<td>3</td>
<td>RP3</td>
<td>R53</td>
</tr>
<tr>
<td>4</td>
<td>RP4</td>
<td>R51</td>
</tr>
<tr>
<td>5</td>
<td>RP5</td>
<td>R49</td>
</tr>
<tr>
<td>6</td>
<td>RP6</td>
<td>R47</td>
</tr>
<tr>
<td>7</td>
<td>RP7</td>
<td>R45</td>
</tr>
<tr>
<td>8</td>
<td>RP8</td>
<td>R43</td>
</tr>
</tbody>
</table>
Chapter 8: Specifications

This chapter contains specifications for the D8 series controllers, TB50 terminal board, Dual DAC module, Serial DAC module and the D8 power supply.

System Specifications

This section contains D8 series controller specifications for environmental specifications and physical dimensions, inputs, outputs, the serial interface and system power requirements.

The controller consists of a processor module with a 50-terminal block (TB50) or a processor module with an 18-terminal block (TB18).

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>UL® 61010-1 Safety requirements for measurement, control and laboratory equipment File E185611</td>
</tr>
</tbody>
</table>

Physical Specifications

<table>
<thead>
<tr>
<th>Table 8.2 – Environmental Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
</tr>
<tr>
<td>Operating Temperature</td>
</tr>
<tr>
<td>Humidity</td>
</tr>
<tr>
<td>Standard</td>
</tr>
</tbody>
</table>
Figure 8.1 – D8 Module Dimensions Without Cables

Table 8.3 – D8 with Standard SCSI

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>10.0 to 10.5 inches</td>
<td>254 to 267 mm</td>
</tr>
<tr>
<td>Width</td>
<td>3.80 inches</td>
<td>96 mm</td>
</tr>
<tr>
<td>Humidity</td>
<td>10 to 95% non-condensing</td>
<td>50 mm</td>
</tr>
</tbody>
</table>

*Exact requirement depends on usage and choice of cables.

Figure 8.2 – Clearance with DB25 and SCSI Cable
Figure 8.3 – Clearance with Terminal Blocks (TB1 & TB18)

Figure 8.4 – Clearance with TB1 and SCSI Cable

Table 8.4 – D8 Connections

<table>
<thead>
<tr>
<th>POWER TERMINALS (TB2)</th>
<th>CAPTIVE SCREW CAGE CLAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Wire Gauge (TB2)</td>
<td>22 to 18 AWG (0.5 to 0.75 mm²)</td>
</tr>
<tr>
<td>Power Terminal Torque (TB2)</td>
<td>4.4 to 5.3 in.-lb. (0.5 to 0.6Nm)</td>
</tr>
<tr>
<td>Sensor Terminals (TB1)</td>
<td>Captive screw cage clamp</td>
</tr>
<tr>
<td>Sensor Wire Gauge (TB1)</td>
<td>Thermocouple: 20 AWG (0.5 mm²)</td>
</tr>
<tr>
<td></td>
<td>Process: 22 to 20 AWG (0.5 mm²)</td>
</tr>
<tr>
<td></td>
<td>Communications: 24 AWG (0.2 mm²)</td>
</tr>
<tr>
<td>Sensor Terminal Torque (TB1)</td>
<td>4.4 to 5.3 in.-lb. (0.5 to 0.6Nm)</td>
</tr>
<tr>
<td>Output Terminals (TB18)</td>
<td>Captive screw cage clamp</td>
</tr>
<tr>
<td>Output Wire Gauge (TB18)</td>
<td>Multiconductor cables: 24 AWG (0.2 mm²)</td>
</tr>
<tr>
<td></td>
<td>Single-wire: 22 to 18 AWG (0.5 to 0.75 mm²)</td>
</tr>
<tr>
<td>Output Terminal Torque (TB18)</td>
<td>4.4 to 5.3 in.-lb. (0.5 to 0.6Nm)</td>
</tr>
<tr>
<td>SCSI Connector</td>
<td>SCSI-2 female</td>
</tr>
<tr>
<td>DeviceNet™ Connector</td>
<td>Male, sealed, micro-style, quick disconnect DeviceNet™ connector</td>
</tr>
</tbody>
</table>
Table 8.5 – TB50 Physical Dimensions

<table>
<thead>
<tr>
<th></th>
<th>0.32 lb.</th>
<th>0.15kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>4.1 inches</td>
<td>104 mm</td>
</tr>
<tr>
<td>Width</td>
<td>4.0 inches</td>
<td>102 mm</td>
</tr>
<tr>
<td>Height</td>
<td>1.5 inches</td>
<td>37 mm</td>
</tr>
<tr>
<td>Height Off Panel (DIN Brackets Removed)</td>
<td>0.92 inches</td>
<td>23 mm</td>
</tr>
</tbody>
</table>

Figure 8.5 – TB50 Dimensions

Table 8.6 – TB50 Connections

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw Terminal Torque</td>
<td>4.4 to 5.3 in.-lb. (0.5 to 0.6Nm)</td>
</tr>
<tr>
<td>SCSI Connector on Board</td>
<td>SCSI-2 female</td>
</tr>
<tr>
<td>Output Terminals</td>
<td>Captive screw cage clamp</td>
</tr>
<tr>
<td>Output Wire Gauge</td>
<td>Multiconductor cables: 24 AWG (0.2 mm²)</td>
</tr>
<tr>
<td></td>
<td>Single-wire: 22 to 18 AWG (0.5 to 0.75 mm²)</td>
</tr>
<tr>
<td>Output Terminal Torque</td>
<td>4.4 to 5.3 in.-lb. (0.5 to 0.6Nm)</td>
</tr>
</tbody>
</table>

Table 8.7 – TB50 with Straight SCSI

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>6.4 inches</td>
<td>163 mm</td>
</tr>
<tr>
<td>Width</td>
<td>4.0 inches</td>
<td>102 mm</td>
</tr>
<tr>
<td>Height</td>
<td>1.5 inches</td>
<td>37 mm</td>
</tr>
</tbody>
</table>
Inputs
The controller accepts analog sensor inputs which are measured and may be used as feedback for control loops. It also accepts digital (TTL) inputs which may be used to trigger certain firmware features.

Table 8.8 – Analog Inputs

<table>
<thead>
<tr>
<th>Number of Control Loops</th>
<th>Options for four or eight</th>
</tr>
</thead>
</table>
| Number of Analog Inputs | Four-loop models: 4 analog inputs
 Eight-loop models: 8 analog inputs |
| Input Switching | Differential, solid-state multiplexer |
| Input Sampling Rate | Four-loop models: 6 Hz (167ms) at 60Hz; 5Hz (200ms) at 50 Hz
 Eight-loop models: 3 Hz (333ms) at 60Hz; 2.5Hz (400ms) at 50 Hz |
| Miliampere Inputs | 0 to 20mA (3Ω resistance) with scaling resistors |
| Voltage Input Ranges Available | 0 to 10V, 0 to 5V with scaling resistors |
| Source Impedance | For 60mV thermocouple, measurements are within specification with up to 500Ω source resistance
 For other types of analog signals, the maximum source impedance is 5000Ω |
| Input Range | -10 to +60mV, or 0 to 10V with scaling resistors |
| Resolution | 0.006%, greater than 14 bits (internal) |
| Accuracy | 0.03% of full scale (60mV) at 25 °C
 0.08% of full scale (60mV) at 0 to 50 °C |
| Analog Over Voltage Protection | ±20V referenced to digital ground. |
| Maximum Common Mode Voltage | 5V input to input or input to analog common |
| Common Mode Rejection (CMR) | For inputs that do not exceed ±5V, >60dB dc to 1kHz, and 120dB at selected line frequency. |
Calibration

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic zero and full scale</td>
<td></td>
</tr>
<tr>
<td>Analog Ground to Frame Ground Maximum</td>
<td>40V</td>
</tr>
<tr>
<td>DC Common to Frame Ground Maximum Potential</td>
<td>40V</td>
</tr>
<tr>
<td>Open Thermocouple Detection</td>
<td>Pulse type for upscale break detection</td>
</tr>
</tbody>
</table>

Table 8.9 – Thermocouple Range and Resolution

<table>
<thead>
<tr>
<th>THERMOCOUPLE TYPE</th>
<th>RANGE IN °F</th>
<th>RANGE IN °C</th>
<th>ACCURACY* AT 25 °C AMBIENT °F</th>
<th>ACCURACY* AT 25 °C AMBIENT °C</th>
<th>ACCURACY* AT 0 TO 50 °C AMBIENT °F</th>
<th>ACCURACY* AT 0 TO 50 °C AMBIENT °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>-350 to 1,400</td>
<td>-212 to 760</td>
<td>±2.2</td>
<td>±1.2</td>
<td>±3.3</td>
<td>±1.8</td>
</tr>
<tr>
<td>K</td>
<td>-450 to 2,500</td>
<td>-268 to 1,371</td>
<td>±2.4</td>
<td>±1.3</td>
<td>±3.8</td>
<td>±2.1</td>
</tr>
<tr>
<td>T</td>
<td>-450 to 750</td>
<td>-268 to 399</td>
<td>±2.9</td>
<td>±1.6</td>
<td>±5.8</td>
<td>±3.2</td>
</tr>
<tr>
<td>S</td>
<td>0 to 3,200</td>
<td>-18 to 1,760</td>
<td>±5.0</td>
<td>±2.8</td>
<td>±8.8</td>
<td>±4.9</td>
</tr>
<tr>
<td>R</td>
<td>0 to 3,210</td>
<td>-18 to 1,766</td>
<td>±5.0</td>
<td>±2.8</td>
<td>±8.8</td>
<td>±4.9</td>
</tr>
<tr>
<td>B</td>
<td>150 to 3,200</td>
<td>66 to 1,760</td>
<td>±7.2</td>
<td>±4.0</td>
<td>±22.1</td>
<td>±12.3</td>
</tr>
<tr>
<td>E</td>
<td>-328 to 1,448</td>
<td>-200 to 787</td>
<td>±1.8</td>
<td>±1.0</td>
<td>±2.9</td>
<td>±1.6</td>
</tr>
</tbody>
</table>

* True for 10% to 100% of span except type B, which is specified for 800°F to 3200°F.

Table 8.10 – RTD Range and Resolution

<table>
<thead>
<tr>
<th>RANGE IN °F</th>
<th>RANGE IN °C</th>
<th>RESOLUTION IN °C</th>
<th>MEASUREMENT TEMPERATURE IN °C</th>
<th>ACCURACY AT 25 °C AMBIENT °F</th>
<th>ACCURACY AT 25 °C AMBIENT °C</th>
<th>ACCURACY AT 0 TO 50 °C AMBIENT °F</th>
<th>ACCURACY AT 0 TO 50 °C AMBIENT °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>-328.0 to 1150.0</td>
<td>-200.0 to 621.1</td>
<td>0.07</td>
<td>25</td>
<td>0.9</td>
<td>0.5</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>2.7</td>
<td>1.5</td>
<td>4.1</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Table 8.11 – Input Resistance for Voltage Inputs

<table>
<thead>
<tr>
<th>RANGE</th>
<th>INPUT RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 10V</td>
<td>50kΩ</td>
</tr>
<tr>
<td>0 to 5V</td>
<td>40kΩ</td>
</tr>
</tbody>
</table>
Table 8.12 – Digital Inputs

| Number | With TB50: 8
 | With TB18: 3 |
|--------|-------------------|
| Function | Selectable for output override or remote job selection |
| Input Voltage Protection | Diodes to supply and common. Source must limit current to 10mA for override conditions |
| Voltage Levels | <1.3V = Low
| | >3.7V = High (TTL)
	5V maximum, 0V minimum
Maximum Switch Resistance to Pull Input Low	1.7kΩ
Minimum Switch Off Resistance	1.4kΩ
Response Time	50ms (AC line frequency set to 60Hz)
	60ms (AC line frequency set to 50Hz)

Outputs

The controller directly accommodates switched dc and open-collector outputs only. These outputs can be used to control a wide variety of loads. They are typically used to control solid-state relays or other power switching devices which, in turn, control devices such as heaters. They may also be used to signal another device of an alarm condition in the controller.

An open-collector CPU watchdog output is also provided so that an external device can monitor the CPU state.

Analog Outputs

Contact your supplier or Watlow for more information on these accessory products. Contact your supplier or Watlow for more information on these accessory products.

Digital Outputs

Table 8.13 – Digital Outputs Control / Alarm

| Number | 20 with TB50 option or 11 with TB18 option |
| Operation | Open collector output; ON state sinks to logic common |
| Function | 1 Global alarm output
| | 1 CPU watchdog output
	Balance selectable as closed-loop control or alarms
Number of Control Outputs per PID Loop	2 (maximum)
Control Output Types	Time proportioning, distributed zero crossing, Serial DAC or on/off. All independently selectable for each output. Heat and cool control outputs can be individually disabled for use as alarm outputs
Time Proportioning Cycle Time	1 to 255 seconds, programmable for each output
Control Action	Reverse (heat) or direct (cool), independently selectable for each output
Off State Leakage Current	<0.01mA to dc common
Maximum Current	60mA for each output. 5V power supply (from the processor module) can supply up to 350mA total to all outputs
Maximum Voltage Switched	24VDC
Table 8.14 – 5VDC Output (Power to Operate Solid-State Relays)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>5VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Current</td>
<td>350mA</td>
</tr>
</tbody>
</table>

Table 8.15 – Communications

| Minimum Time Between Polled I/O Requests | 20ms |

Table 8.16 – D8 Power Requirements

<table>
<thead>
<tr>
<th>Voltage</th>
<th>15 to 24 +/-3VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Current</td>
<td>1A</td>
</tr>
<tr>
<td>Maximum Current Draw from CANbus Network</td>
<td>250mA</td>
</tr>
</tbody>
</table>
Glossary

A

AC
See Alternating Current.

AC Line Frequency
The frequency of the ac line power measured in Hertz (Hz), usually 50 or 60Hz.

Accuracy
Closeness between the value indicated by a measuring instrument and a physical constant or known standards.

Action
The response of an output when the process variable is changed. See also Direct Action, Reverse Action.

Address
A numerical identifier for a controller when used in computer communications.

Alarm
A signal that indicates that the process has exceeded or fallen below a certain range around the set point. For example, an alarm may indicate that a process is too hot or too cold. See also Failed Sensor Alarm, Global Alarm, High Deviation Alarm, High Alarm, Loop Alarm, Low Deviation Alarm, Low Alarm.

Alarm Delay
The lag time before an alarm is activated.

Alternating Current (AC)
An electric current that reverses at regular intervals, and alternates positive and negative values.

Ambient Temperature
The temperature of the air or other medium that surrounds the components of a thermal system.

American Wire Gauge (AWG)
A standard of the dimensional characteristics of wire used to conduct electrical current or signals. AWG is identical to the Brown and Sharpe (B&S) wire gauge.

Ammeter
An instrument that measures the magnitude of an electric current.

Ampere (Amp, A)
A unit that defines the rate of flow of electricity (current) in the circuit. Units are one coulomb \((6.25 \times 10^{18} \text{ electrons})\) per second.

Analog Output
A continuously variable signal that is used to represent a value, such as the process value or set point value. Typical hardware configurations are 0 to 20mA, 4 to 20mA or 0 to 5VDC.

Automatic Mode
A feature in which the controller sets PID control outputs in response to the process variable and the set point.

Automatic Reset
The integral function of a PI or PID temperature controller that adjusts the process temperature to the set point after the system stabilizes. The inverse of integral.

Autotune
A feature that automatically sets temperature control PID values to match a particular thermal system.
AWG
See American Wire Gauge.

B
Baud Rate
The rate of information transfer in serial communications, measured in bits per second.

BCD
Binary coded decimal. For BCD job loading, the binary states of three digital inputs are decoded as decimal numbers 1 to 8.

Bumpless Transfer
A smooth transition from automatic (closed loop) to manual (open loop) operation. The control output does not change during the transfer.

C
Calibration
The comparison of a measuring device (an unknown) against an equal or better standard.

Celsius
A temperature scale in which water freezes at 0°C and boils at 100°C at standard atmospheric pressure. The formula for conversion to the Fahrenheit scale is °F = (1.8 x °C) + 32. Formerly known as Centigrade.

Central Processing Unit (CPU)
The unit of a computing system that includes the circuits controlling the interpretation of instructions and their execution.

Circuit
Any closed path for electrical current. A configuration of electrically or electromagnetically-connected components or devices.

Class
The model for a software object. Objects of a class are similar to one another. DeviceNet™ classes define what attributes and services objects of that type have. Class services are used to examine and change class attributes.

Closed Loop
A control system that uses a sensor to measure a process variable and makes decisions based on that feedback.

Cold Junction
Connection point between thermocouple metals and the electronic instrument.

Common Mode Rejection Ratio
The ability of an instrument to reject electrical noise, with relation to ground, from a common voltage. Usually expressed in decibels (dB).

Communications
The use of digital computer messages to link components. See also Serial Communications, Baud Rate.

Control Action
The response of the PID control output relative to the difference between the process variable and the set point. See also Direct Action, Reverse Action.

Current
The rate of flow of electricity. The unit of measure is the Ampere (A). 1 Ampere = 1 coulomb per second.

Cycle Time
The time required for a controller to complete one on-off-on cycle. It is usually expressed in seconds.

Cyclic Redundancy Check (CRC)
An error checking method in communications that provides a high level of data security.

D
DAC
See Digital-to-Analog Converter.

Data Logging
A method of recording a process variable over a period of time. Used to review process performance.

DC
See Direct Current.
Default Parameters
The programmed instructions that are permanently stored in the microprocessor software.

Derivative Control (D)
The last term in the PID algorithm. Action that anticipates the rate of change of the process and compensates to minimize overshoot and undershoot. Derivative control is an instantaneous change of the control output in the same direction as the proportional error. This is caused by a change in the process variable that decreases over the time of the derivative. The derivative is expressed in seconds.

Deutsche Industrial Norms (DIN)
A set of technical, scientific and dimensional standards developed in Germany. Many DIN standards have worldwide recognition.

Deviation Alarm
See High Deviation Alarm, Low Deviation Alarm.

DeviceNet™
DeviceNet™ is a network that connects industrial devices. DeviceNet™ is designed to provide a cost-effective and robust solution to device networking. DeviceNet™ is designed to transport control-oriented information associated with low-level devices and other information related to the system being controlled, such as configuration parameters.

Digital-to-Analog Converter (DAC)
A device that converts a numerical input signal to a signal that is proportional to the input in some way.

DIN
See Deutsche Industrial Norms.

Direct Action
An output control action in which an increase in the process variable causes an increase in the output. Usually used with cooling applications.

Direct Current (DC)
An electric current that flows in one direction.

Distributed Zero Crossing (DZC)
A form of digital output control in which the output on/off state is calculated for every ac line cycle. Power is switched at the zero cross, which reduces electrical noise. See also Zero Cross.

DZC
See Distributed Zero Crossing.

E

Earth Ground
A metal rod, usually copper, that provides an electrical path to the earth, to prevent or reduce the risk of electrical shock.

EIA/TIA
Electronic Industries Alliance (EIA) and Telecommunications Industry Association (TIA). See also Serial Communications.

EIA/TIA-232 — A standard for interface between data terminal equipment and data communications equipment for serial binary data interchange. This is usually for communications over a short distance (50 feet [15 m] or less) and to a single device.

EIA/TIA-485 — A standard for electrical characteristics of generators and receivers for use in balanced digital multipoint systems. This is usually used to communicate with multiple devices over a common cable or where distances over 50 feet (15 m) are required.

Electrical Noise
See Noise.

Electromagnetic Interference (EMI)
Electrical and magnetic noise imposed on a system. There are many possible causes, such as switching ac power inside the sine wave. EMI can interfere with the operation of controllers and other devices.

Electrical-Mechanical Relays
See Relay, Electromechanical.
Emissivity
The ratio of radiation emitted from a surface compared to radiation emitted from a blackbody at the same temperature.

Engineering Units
Selectable units of measure, such as degrees Celsius or Fahrenheit, pounds per square inch, newtons per meter, gallons per minute, liters per minute, cubic feet per minute or cubic meters per minute.

F
Fahrenheit
The temperature scale that sets the freezing point of water at 32°F and its boiling point at 212°F at standard atmospheric pressure. The formula for conversion to Celsius is:

\[^\circ C = \frac{5}{9} (^\circ F - 32). \]

Failed Sensor Alarm
Warns that an input sensor no longer produces a valid signal.

Filter
Filters are used to handle various electrical noise problems.

Digital Filter — A filter that slows the response of a system when inputs change unrealistically or too fast. Equivalent to a standard resistor-capacitor (RC) filter.

Digital Adaptive Filter — A filter that rejects high frequency input signal noise (noise spikes).

Heat/Cool Filter — A filter that slows the change in the response of the heat or cool output. The output responds to a step change by going to approximately 2/3 its final value within the numbers of scans that are set.

Frequency
The number of cycles over a specified period of time, usually measured

G
Gain
The amount of amplification used in an electrical circuit. Gain can also refer to the proportional (P) mode of PID.

Global Alarm
 Warns that one or more alarm conditions exist by activating a digital output.

Ground
An electrical line with the same electrical potential as the surrounding earth. Electrical systems are usually grounded to protect people and equipment from shocks due to malfunctions. Also referred to as “safety ground.”

H
Hertz (Hz)
Frequency, measured in cycles per second.

High Deviation Alarm
Warns that the process has risen more than a certain amount above set point. It can be used as either an alarm or control function.

High Power
(As defined by Watlow) Any voltage above 24VAC or VDC and any current level above 50mA AC or mA DC.

High Alarm
A signal that is associated with a set maximum value that can be used as either an alarm or boost control function.

HMI
Human-machine interface.

Hysteresis
Control Hysteresis — The range through which a variation of the input produces no noticeable change in the output. In the hysteresis, specific conditions can be placed on control output actions. Operators select the hysteresis. It is usually above the heating proportional band and below the cooling proportional band.
Process Hysteresis — In heat/cool applications, the +/- difference between heat and cool. Also known as process deadband.

I

Input
- **Analog Input** — An input that accepts process variable information.
- **Digital Input** — An input that accepts on and off signals.

Input Scaling
The converting of input signals to the engineering units of the process variable.

Input Type
The signal type that is connected to an input, such as thermocouple, RTD or process.

Instance
An object that is an occurrence of a class. Each instance of a DeviceNet™ object can have unique values for its attributes and can be examined or changed using the instance services. Class services are used to examine and change class attributes, which affect all instances. Instance services are used to examine and change instance attributes which affect only that particular instance.

Integral Control (I)
Control action that automatically eliminates offset, or droop, between set point and actual process temperature.

J

Job
A set of operating conditions for a process that can be stored and recalled in a controller’s memory. Also called a recipe.

Junction
The point where two dissimilar metal conductors join to form a thermocouple.

K

Keypad Lock
A feature that prevents operation of the keypad by unauthorized people.

L

Lag
The delay between the output of a signal and the response of the instrument to which the signal is sent.

Linearity
The deviation in response from an expected or theoretical straight line value for instruments and transducers. Also called *linearity error*.

Load
The electrical demand of a process, expressed in power (Watts), current (Amps) or resistance (Ohms). The item or substance that is to be heated or cooled.

Low Deviation Alarm
 Warns that the process has dropped more than a certain amount below set point. It can be used as either an alarm or control function.

Low Alarm
A signal that is associated with a set minimum value that can be used as either an alarm or boost control function.

M

Manual Mode
A selectable mode that has no automatic control aspects. The operator sets output levels.

Manual Reset
A parameter that allows the user to eliminate offset or droop between set point and actual process temperature. See also Integral.

Milliampere (mA)
One thousandth of an ampere.
Noise
Unwanted electrical signals that usually produce signal interference in sensors and sensor circuits. See also Electromagnetic Interference.

Noise Suppression
The use of components to reduce electrical interference that is caused by making or breaking electrical contact, or by inductors.

Object
An object is a software programming concept in which data and functionality are associated with virtual objects. DeviceNet™ objects consist of data, called attributes and functions, called services. Services are used to examine or change attribute values.

Offset
The difference between the set point and the actual value of the process variable. Offset is the error in the process variable that is typical of proportional-only control.

On/Off Control
A method of control that turns the output full on until set point is reached, and then off until the process differs from the set point by more than the hysteresis.

Open Loop
A control system with no sensory feedback.

Optical Isolation
Two electronic networks that are connected through an LED (Light Emitting Diode) and a photoelectric receiver. There is no electrical continuity between the two networks.

Output
Control signal action in response to the difference between set point and process variable.

Output Type
The form of control output, such as time proportioning, distributed zero crossing, Serial DAC or analog. Also the description of the electrical hardware that makes up the output.

Overshoot
The amount by which a process variable exceeds the set point before it stabilizes.

PID
Proportional, Integral, Derivative. A control mode with three functions: Proportional action adjusts the output in proportion to the deviation from set point, integral corrects for droops, and derivative prevents overshoot and undershoot.

Polarity
The electrical quality of having two opposite poles, one positive and one negative. Polarity determines the direction in which a current tends to flow.

Process Input
A voltage or current input that represents a straight line function.

Process Variable (PV)
The parameter that is controlled or measured. Typical examples are temperature, relative humidity, pressure, flow, fluid level, events, etc.

Proportional (P)
Output effort proportional to the error from set point. For example, if the proportional band is 20° and the process is 10° below the set point, the heat proportioned effort is 50 percent. The lower the PB value, the higher the gain.

Proportional Band (PB)
A range in which the proportioning function of the control is active. Expressed in units, degrees or percent of span. See also PID.

Proportional Control
A control using only the P (proportional) value of PID control.

PV
See Process Variable.
Ramp
A programmed change in the temperature of a set point system.

Range
The area between two limits in which a quantity or value is measured. It is usually described in terms of lower and upper limits.

Recipe
See Job.

Relay
A switching device.

Electromechanical Relay – A power switching device that completes or interrupts a circuit by physically moving electrical contacts in and out of contact with each other. Not recommended for PID control.

Solid State Relay (SSR) – A switching device with no moving parts that completes or interrupts a circuit electrically.

Reset
See Automatic Reset, Manual Reset.

Resistance
Opposition to the flow of electric current, measured in Ohms.

Resistance Temperature Detector (RTD)
A sensor that uses the resistance temperature characteristic to measure temperature. There are two basic types of RTDs: the wire RTD, which is usually made of platinum, and the thermistor, which is made of a semiconductor material. The wire RTD is a positive temperature coefficient sensor only, while the thermistor can have either a negative or positive temperature coefficient.

Reverse Action
An output control action in which an increase in the process variable causes a decrease in the output. Heating applications usually use reverse action.

RTD
See Resistance Temperature Detector.

Serial Communications
A method of transmitting information between devices by sending all bits serially over a single communication channel.

Set Point (SP)
The desired value of the process variable. For example, the temperature at which a system is to be maintained.

Shield
A metallic foil or braided wire layer surrounding conductors that is designed to prevent electrostatic or electromagnetic interference from external sources.

Signal
Any electrical transmittance that conveys information.

Solid State Relay (SSR)
See Relay, Solid State.

Span
The difference between the lower and upper limits of a range expressed in the same units as the range.

Stability
The ability of a device to maintain a constant output with the application of a constant input.

Thermistor
A temperature-sensing device made of semiconductor material that exhibits a large change in resistance for a small change in temperature. Thermistors usually have negative temperature coefficients, although they are also available with positive temperature coefficients.

Thermocouple (T/C)
A temperature sensing device made by joining two dissimilar metals. This junction produces an electrical voltage in proportion to the difference in temperature between the hot junction (sensing junction) and the lead wire connection to the instrument (cold junction).
Thermocouple Extension Wire
A grade of wire used between the measuring junction and the reference junction of a thermocouple. Extension wire and thermocouple wire have similar properties, but extension wire is less costly.

Transmitter
A device that transmits temperature data from either a thermocouple or RTD by way of a two-wire loop. The loop has an external power supply. The transmitter acts as a variable resistor with respect to its input signal. Transmitters are desirable when long lead or extension wires produce unacceptable signal degradation.

U
Undershoot
The amount by which a process variable falls below the set point before it stabilizes.

V
Volt (V)
The unit of measure for electrical potential, voltage or electromotive force (EMF). See also Voltage.

Voltage (V)
The difference in electrical potential between two points in a circuit. It is the push or pressure behind current flow through a circuit. One volt (V) is the difference in potential required to move one coulomb of charge between two points in a circuit, consuming one joule of energy. In other words, one volt (V) is equal to one ampere of current (I) flowing through one ohm of resistance (R), or \(V = IR \).

Z
Zero Cross
Action that provides output switching only at or near the zero-voltage crossing points of the ac sine wave.
Index

A
AC Line Frequency 60, 104
Address, see also Node Address 47
agency compliance 153
AH alarm code 64
AL alarm code 64
Alarm Acknowledge 57, 133
Alarm Delay 56, 126
Alarm Enable 57, 133
Alarm Function 57, 134
Alarm High Function 121
Alarm High Output 56, 122
Alarm High Set Point 56, 76, 121
Alarm Hysteresis 56, 125
Alarm Low Function 125
Alarm Low Output 56, 125
Alarm Low Set Point 56, 76, 124
Alarm Object 56
alarms
acknowledging 64, 133
boost output 122
codes 64
delaying 103, 126
enabling 121, 133
functions 122
global alarm output 39, 40, 76
hysteresis 76, 125
messages 64
SCRs 37
setting up 73
solid-state relays 37
status through communications 134
troubleshooting 137
wiring 37
Alarms menu 121
Alarm Status 50, 56, 134
ambient temperature
 Ambient Sensor Reading 60, 134
 H/W error: Ambient alarm 141
 operating range 21, 153
Ambient Warning 138
analog output, see also Dual DAC or Serial DAC 94
Application Objects 46
Assembly Object 49
attribute 45, 47
automatic mode
 Mode parameter 96
 restoring after failed sensor repair 75
 setting 66
auto message on loop display 63
autotuning 66, 72, 96
AW 138
AW alarm code 64

B
battery 147
 Battery Dead alarm 65, 140
 shelf life 17
Battery Status 60
Baud Rate 42, 43, 49, 105
BCD Job Load 59, 100
BCD Job Load Logic 59, 101
boost output 75, 122
bridge circuit 34
Bus Off Count parameter 106

cables
 SCSI 17, 18, 21, 22, 30, 154, 155, 156, 157
 tie wrapping 35
 calculating checksum 30
Calibration Offset 53, 109
cascade control 79
 application example 80
 parameters 128
 setting up 80
Cascade High Set Point 59, 129
Cascade Low Set Point 59, 128
Cascade menu 128
Cascade Object 58
Cascade Primary Loop 59, 128
case, removing 145
Celsius 108
characteristics 16
checksum 30, 106
class 47
Clearing the RAM 145
closed-loop control 68
communications
cable 41
Connection Object 47, 52
contact information 3
control algorithms 87
on/off 87
proportional, integral and derivative (PID) 89, 92
proportional (P) 88, 92
proportional with integral (PI) 89, 92
controller
agency compliance 153
clearance 154
connecting to TB50 30
environment 153
input specifications 157
mounting 22
output specifications 159
specifications 153
controllers
term versus reset settings 91
Control menu 112
control mode
as shown on display 63
changing 66
unexpected switch from automatic to manual 139
Control Object 55
control outputs 93
action 94, 118
curve 120
cycle time 93, 117
direct action 94, 118
distributed zero crossing 93, 116
filter 94, 114
hysteresis 115
limit 118
on/off 93, 116
reverse action 94, 118
SCRs 37
solid-state relays 37
status on powerup 102
time proportioning 93, 116
troubleshooting 144
type 116
wiring 37
Control Ratio 58, 130
Cool Action 54, 118
Cool Cycle Time 54, 117
Cool Derivative 55, 114
Cool Filter 56, 114
Cool Integral 55, 113
Cool Manual Reset 55, 114
cool message on loop display 63
Cool Output Action for Watchdog 55
Cool Output Curve 54, 120
Cool output power
in the assembly object 50
in the output object 54
setting via the keypad 66
Cool Output Retransmit 57, 127
Cool Output Type 54, 116
Cool Power Limit 54, 118
Cool Power Limit Time 54, 119
Cool Proportional Band 55, 113
Cool Retransmit High Process Variable 57, 127
Cool Retransmit Low Process Variable 57, 127
Cool SDAC High Signal 55, 118
Cool SDAC Low Signal 55, 117
Cool SDAC Signal 55, 117
CPU Watchdog Timer 37
CS 106
current inputs
scaling resistors 35, 149
wiring 35
curve 120
cycle time 117

D
data logging 77
data rate 49
Data rate switch, see also Baud Rate 42, 43, 49, 105
Data Types 47
decimal placement 46
default settings, restoring 145
derivative
description 89
guidelines for setting 91
setting a value 114
settings from other controllers 91
term versus rate settings 91
DeviceNet 41, 45, 95
Connector 17, 41, 42, 155
interface 46
master 45, 47
network 41, 45
objects 46, 48, 49
scanner 45
differential control, see also ratio control 83
digital inputs
mode override 102
remote job selection 100
restoring automatic control after sensor
failure 115
specifications 159
technical information 38
testing 31, 131
troubleshooting 144
via DeviceNet 60
wiring 38
Digital Inputs 131
Digital Output Alarm 60
Digital Output Alarm Polarity 60, 105
digital outputs
specifications 159
testing 30, 132, 144
troubleshooting 144
via DeviceNet 60
will not turn on 27
wiring 35
dimensions
controller 154
TB50 156
display 62
control modes 62
does not work 138
job display 65
loop information 62
navigation 61
process variable not correct 138
scanning loop 63
toggling between loop and job displays 65
Display Format 53, 110
Display Test 132
distributed zero crossing 93, 116
D/O alarm polarity parameter 60, 77, 105
droop 114
Dual DAC 41
Duplicate MAC ID Check 47
dust 21

E
EDS 45
Electronic Data Sheet, see EDS 45
electrostatic discharge 145
environment 21, 153
ESD, see electrostatic discharge 145
Exception Status Byte 51
explicit messages 44, 47, 49, 52, 54, 140
external bridge circuit 34
external safety devices 18

F
Fahrenheit 108
failed sensor alarms
behavior of 138
codes 63, 64
messages 63, 64
output power if sensor alarm occurs 119
restoring automatic control after sensor
repair 75, 115
setting up 73
thermocouple open 74, 119
thermocouple reversed 74, 109
thermocouple short 74
filter
output 94, 114
sensor input 112
firmware
checksum 106
version 106
flash memory, replacing 145
front panel 17

G
Get Attribute Single 48
Global object 59, 99, 131, 132
Global Setup menu 99
grounding, troubleshooting 143
ground loops 27
and thermocouples 34
isolation 27, 35
paths 27
troubleshooting 143
Group 2 Only Slave 46

H
HD alarm code 64
Heat Action 54, 118
Heat Cycle Time 54, 117
Heat Derivative 55, 114
Heat Filter 56, 114
Heat Integral 55, 113
Heat Manual Reset 55, 114
heat message on loop display 63
Heat Output Action for Watchdog 55
Heat Output Curve 54, 120
Heat output power
in the assembly object 50
in the output object 54
setting via the keypad 66
Heat Output Retransmit 57, 127
Heat Output Type 54, 116
Heat Power Limit 54, 118
Heat Power Limit Time 54, 119
Heat Proportional Band 55, 113
Heat Retransmit High Process Variable 57, 127
Heat Retransmit Low Process Variable 57, 127
Heat SDAC High Signal 55, 118
Heat SDAC Low Signal 55, 117
Heat SDAC Signal 55, 117
High Deviation Function 123
High Deviation Output 56, 123
High Deviation Value 56, 76, 122
humidity specification 153
HW Ambient Status 60
H/W error: Ambient 65, 141
H/W error: Gain 65, 141
H/W error: Gain or Offset 141
H/W error: Offset 65
HW Gain Status 60
HW Offset Status 60
hysteresis
 alarm 76
 control 115
Hysteresis 56, 115

I
Identity Object 48
Inactivity Fault 55
input data 50, 51
Input Filter 53
 description 112
 setting before autotuning 73
Input High Signal 53, 111
Input Low Signal 53, 111
Input Menu 107
Input Object 53
Input Range High 53, 110
Input Range Low 53, 111
inputs
 filter 112
 scaling 69
 scaling parameters 69, 110, 111
 scaling resistors 148
 sensor inputs wiring 31
 setup parameters 107
 specifications 157
input scaling 69
Input Type 53, 107
Input Units 53, 108
installation 20
 alarm wiring 37
 clearance 22, 154
 controller 22
 control output wiring 37
 digital output wiring 35
 environment 21
 location 21
 overview 20
 panel hole dimensions 23
 power supply 25, 28
 sensor input wiring 31
 system components 21
 TB50 24, 30
 testing 30
 thickness 23
tie-wrapping cables 35
tools 21
torque for screw terminals 29
typical 20
wire recommendations 26, 35
wire sizes
 controller 26
 TB50 output 156
 wiring 25, 31, 35, 41
instance 47, 49, 52, 53, 54, 55, 56, 57, 58, 59
instance attributes 48
integral
 description 89
 guidelines for setting 91
 setting a value 113
 settings from other controllers 91
I/O Tests menu 131

J
job displays 65
jobs
 remote selection 100
 saving to memory 100
jumpers
 power supply common 29, 30
 when using 2-wire RTD 34

K
keypad
 does not work 65, 139, 142
 navigation 61, 62
 testing 132
Keypad Lock 60, 104
Keypad Test 132

L
LD alarm code 64
limit controller 19
limit, output 118
Load Setup From Job 59, 99
load setup not available 99
Loop Name 53, 108
loop name on loop display 62
loops
 closed-loop control 68
 display information 62
 naming 108
 number available 157
 tuning 90
Low Deviation Function 124
Low Deviation Output 56, 124
Low Deviation Value 56, 76, 123
low power alarm 65, 140

M
MAC ID, see also Node Address 47, 49, 105
man message on loop display 63
manual mode
 during a failed sensor alarm 119
 during a mode override 119
 during a thermocouple open alarm 119
 if ambient temperature is out of range 135
Mode parameter 96
 setting 66
manual reset 114
master
 DeviceNet 15, 19, 44, 45, 46, 49, 50, 140
 loop 58, 82, 83, 84, 85, 86, 129, 130
Master/Slave 46
menus
 accessing 67
 Alarms 121
 Cascade 128
 Global Setup 99
 Input 107
 map of 98
 navigating 67
 Output 116
 PV Retrans 126
 Ratio 129
 menu structure 98, 177
Message Router Object 48
Mode 56, 66, 96
Mode outputs disabled 67
Mode Override 59, 102
 percent output power 119
Mode Override Digital input Active 59, 102
Modes 50
Module LED parameter, see also Module status indicator 106
Module Status Indicator 41, 44, 106, 139

N
Network LED parameter, see also Network
Network Length 42
Network Status Indicator 41, 44, 106, 140
Node Address 49, 105
 switch 43, 49, 105
noise
 eliminating problems with 26
 isolation 27
 reducing with zero-cross switching 93
 suppression 26, 27
 symptoms 27

O
on/off control
 control signal 93
 description 87
 selecting 116
Open T/C ht/cl out 74
Open Thermocouple Cool Output Average 54, 74, 120
Open Thermocouple Heat Output Average 54, 74, 120
ordering options 16
output data 50, 51
Output Menu 116
Output Object 54
output power
 changing 66
 on loop display 62
outputs
 5VDC output power 160
 boost output 75
 filter 94, 114
 solid-state relays 37
 specifications 159
 output specifications 159
 over-temperature shutdown devices 18

P
parameters
 alarm 121
 cascade control 128
 control 112
 editing
 through keypad 67
 via DeviceNet 45
global 99
input 107
I/O tests 131
map of 98, 177
navigating 67
output 116
process variable retransmit 126
ratio control 129
restoring all default settings 145
Serial DAC 117
parts list 16
PID
 settings for various applications 92
 settings from other controllers 91
tuning 90
PLC 66, 77, 85, 86
 transmitting process data to 77
polled I/O 45, 50, 52, 160
power failure 19, 103
power requirements 160
power supply
 for Dual DAC 41
 mounting 25
 requirements 25, 160
wiring 28
Power Up Alarm Delay 60, 103
Power Up Loop Mode 60, 103
Predefined Master/Slave Connection Set 47
process alarms 137
 alarm high 76
 alarm low 76
 boost output 75
 codes 64
 function 75
 high deviation 76
 low deviation 76
 outputs 75
 parameters 121
process inputs
 0 to 5VDC setup example 71
 4 to 20mA setup example 70
display format 110
engineering units 108
scaling and calibration 151
specifications 157
process variable
 not displayed correctly 27, 138, 142
 on loop display 62
Process Variable 53, 62, 97
process variable incorrect on display 138
process variable not correct 142
process variable retransmit 77
 application example 77
 parameters 126
Process Variables 50
proportional band
 description 88
 guidelines for setting 90
 setting a value 113
 settings for various temperature ranges 90
 settings from other controllers 91
PV Retransmit menu 126
PV Retransmit Object 57

R
RAM
 clearing 145
 erasure of during flash memory replacement 145
ratio control 82, 83
 application example 83
 differential control 84
 ratio control 83
 remote analog set point 86
differential control 84
 parameters 129
 remote analog set point 85
 setting up 83
Ratio High Set Point 58, 130
Ratio Low Set Point 58, 130
Ratio Master Loop 58, 129
Ratio menu 129
Ratio Object 58
Ratio Set Point Differential 58, 131
Restore Automatic Mode 56, 75, 115
Return Material Authorization (RMA) 3
Reversed Thermocouple Detect 74, 109
Reverse Thermocouple Detection 53
RF alarm code 64
RO alarm code 64
RTD
 accuracy 158
 alarm messages 64
 calibration offset 109
 range 158
 recommended type 34
 resolution 158
 scaling resistors 34, 150
troubleshooting 143
 wiring 34
RTD alarm 64
RTD Open and RTD Fail Alarms 74

S
safety
 external safety devices 18
 output status on power up 14, 19
Save Setup as Job 59, 100
scaling resistors 34, 35, 148
 for current inputs 35, 149
 for RTD inputs 34, 150
 for voltage inputs 34, 149
scan 47
scanner 45
scanning loop display 17, 61, 62, 63, 107
SCSI cable 17, 18
 clearance 22, 154
 installing 30
Sensor Fail Cool Output 54, 119
 and failed sensor alarm 73
 mode override 102
 reversed thermocouple detection 109
 thermocouple short alarm 104
Sensor Fail Heat Output 54, 119
 and failed sensor alarm 73
 mode override 102
 reversed thermocouple detection 109
 thermocouple short alarm 104
sensor inputs
 calibration offset 109
 engineering units 108
 failed sensor alarms 138
 filter 112
 specifications 157
 troubleshooting 142
 wiring 25
Serial DAC
 configuring the controller output 116
 process variable retransmit 77
 setup parameters 117
 wiring 41
services 48
set point 129, 130
 changing 66
 on loop display 62
 remote analog set point 85
 using cascade control to set 79
 using differential control to set 84
 using ratio control to set 82
Set Point 53, 62, 66, 68, 87, 88, 90, 92, 93, 95, 99, 100, 113, 114, 115, 128, 131, 137
Set Points 50
setting up a process input 69
shutdown devices 18
solid-state relays 144
 5VDC power from controller 160
 distributed zero crossing 93
 troubleshooting connections 144
specifications 153
 controller inputs 157
 controller outputs 159
TB50 156
system alarms
 behavior of 138
 messages 65
 troubleshooting 140
TB18
 alarm outputs 37
 connections 39
 CPU watchdog timer output 37
 digital output wiring 36
 testing after installation 30
 troubleshooting 144
TB50
 alarm outputs 37
 connections 30, 40
 CPU watchdog timer output 37
 digital inputs 38
 digital output wiring 36
 dimensions 156
 mounting on DIN rail 24
 mounting with standoffs 25
 specifications 156
 technical description 18
 terminal specifications 156
 testing after installation 30
 troubleshooting 144
 weight 156
T/C open alarm message 64
T/C reversed alarm message 64
T/C shorted alarm message 64
temperature
 incorrect on display 138, 142
 operating 153
 storage 153
 temperature scale 108
 terminal specifications
 TB50 156
Test D/O parameter 132
 testing
 TB18 after installation 30
 TB50 after installation 30
thermocouples
 accuracy 158
 alarm messages 64
 calibration offset 109
 ground loops 34
 manual mode if break occurs 120
 polarity checking 109
 range 158
 resolution 158
 reversed detection 109
 troubleshooting 142
 types supported 107
 wiring 33
Thermocouple Short Alarm 60, 74, 104
 thermoforming example 85
 tie wraps 35
 time proportioning 116
 cycle time 117
 description 93
TO alarm code 64
TR alarm code 64
troubleshooting 136
alarms 137
 all loops are set to manual 0% 139
Battery Dead alarm 140
 check these things first 136
control mode switches unexpectedly 139
control outputs 144
digital inputs 31, 131, 144
digital outputs 30, 132, 144
display does not work 138
grounding problems 143
H/W error: Ambient alarm 141
H/W error: Gain alarm 141
H/W error: Offset alarm 141
keypad 132, 139, 142
low power alarm 140
process variable incorrect on display 138, 142
RTDs 143
sensor inputs 142
TB18 144
TB50 144
thermocouples 143
 unexpected behavior 139
TS alarm code 64
tuning control loops 90
tun message on loop display 63, 73

V
voltage inputs
 ranges 158
 resistance 158
 scaling resistors 34, 149
 wiring 34

W
Watchdog Inactivity Fault 135
weight
 controller 153
 TB50 156

Z
Zero Calibration 135
Menu Structure

GLOBAL SETUP
- Load Setup from job
- Save setup as job
- BCD job load
- BCD job load logic
- Mode override
- Mode override D/I active
- Power up alarm delay
- Keypad lock
- TC short alarm
- AC line freq
- MAC ID
- Baud rate
- Module LED
- Network LED
- Bus off count
- WATLOW D8x Vx.xx cs=xxxx

OUTPUT
- Heat output
- Heat cycle time
- Heat SDAC signal
- Heat SDAC low signal
- Heat SDAC hi signal
- Heat action
- Heat power limit
- HeatPwr limit time
- Sensor fail heat output
- Open T/C ht out average
- Heat output curve
- Cool output type
- Cool SDAC signal
- CI SDAC low signal
- CI SDAC hi signal
- Cool action
- Cool power limit
- CIpwr limit time
- Sensor fail cool output
- Open T/C cl out average
- Cool output curve

PV RETRANS
- Heat output retrans PV
- Ht retrans LowPV
- Ht retrans HighPV
- Cool output retrans PV
- Cl retrans Low PV
- Cl retrans HighPV

CASCADE
- Cascade prim loop
- Cascade low SP
- Cascade hi SP

RATIO
- Ratio master loop
- Ratio low SP
- Ratio high SP
- Control ratio
- Ratio SP diff

INPUT
- Input type
- Loop name
- Input units
- Calibration offset
- Reversed T/C detect
- Disp format
- Input range high
- Input high signal
- Input range low
- Input low signal
- Input filter

CONTROL
- Heat prop band
- Heat integral
- Heat derivative
- Heat manual reset
- Heat filter
- Cool prop band
- Cool integral
- Cool derivative
- Cool manual reset
- Cool filter
- Hysteresis
- RestoreAuto

ALARMS
- Alarm high SP
- Alarm high func
- Alarm high output
- HiDeviation value
- HiDeviation func
- HiDeviation output
- LoDeviation value
- LoDeviation func
- LoDeviation output
- Alarm low SP
- Alarm low func
- Alarm low output
- Alarm hysteresis
- Alarm delay

I/O TESTS
- Digital inputs
- Keypad test
- Display test
- Test D/O 1
- Test D/O 20
Declaration of Conformity

Series D8

WATLOW Electric Manufacturing Company
1241 Bundy Blvd.
Winona, MN 55987 USA

Declares that the following products:
Designation: Series D8
Classification: Temperature Control, Installation Category II, Pollution degree 2, IP20
Rated Supply: 15 to 24 V ac (dc) 610 mA maximum

Meets the essential requirements of the following European Union Directives by using the relevant standards show below to indicate compliance.

2014/30/EU Electromagnetic Compatibility Directive
EN 61326-1: 2013
- Electrical equipment for measurement, control and laboratory use – EMC requirements (Industrial Immunity, Class A Emissions)
 - CAUTION: This equipment not intended for use in residential environments and may not provide adequate protection to radio reception in such environments
- IEC 61000-4-2:2008
- IEC 61000-4-4:2012
- IEC 61000-4-5:2014
 + A1:2017
 + A4:2017
 + A6:2017
- IEC 61000-4-6:2013 + Corrigendum 2015
- EN 61000-3-2:2018
- EN 61000-3-3:2013¹
 + A1:2017
- SEMI F47-0812
 - Specification for Semiconductor Sag Immunity Figure R1-1

¹For relay loads, cycle time may need to be extended up to 160 seconds to meet flicker requirements depending on load switched and source impedance.

2014/35/EU Low-Voltage Directive
EN 61010-1:2010
Safety Requirements of electrical equipment for measurement, control and laboratory use. Part 1: General requirements

Per 2012/19/EU WEEE Directive - Please Recycle Properly
RoHS compliant per 2011/65/EU Directive.

Models contain a type BR1632 lithium coin cell battery embedded within Maxim Semiconductor DS1230Y/DS9034 RAM which shall be recycled at end of life per 2006/66/EC Battery Directive as amended by 2013/56/EU Directive.

Doug Kuchta
Name of Authorized Representative

Winona, Minnesota, USA
Place of Issue

Director of Operations
Title of Authorized Representative

July 2019
Date of Issue

[Signature of Authorized Representative]
How to Reach Us

Corporate Headquarters
Watlow Electric Manufacturing Company
12001 Lackland Road
St. Louis, MO 63148
Sales: 1-800-WATLOW
Manufacturing Support: 1-800-4WATLOW
Email: info@watlow.com
Website: www.watlow.com
From outside the USA and Canada:
Tel: +1 (314) 878-4600
Fax: +1 (314) 878-6814

Latin America
Watlow de Mexico S.A. de C.V.
Av. Fundición No. 5
Col. Parques Industriales
Querétaro, Qro. CP-76130
Mexico
Tel: +52 442 217-6235
Fax: +52 442 217-6400

Europe
Watlow Plasmatech GmbH
Brennhoftehan – Kellau 156
431 Kuchi
Austria
Tel: +3 0244 20129 0
Email: austria@watlow.com
Website: www.watlow.com
Watlow France
Tour d’Asnières,
4 Avenue Laurent Géy
92600 Asnières sur Seine
France
Tel: +33 (0)1 41 32 79 70
Telecopie: +33(0)1 47 33 36 57
Email: info@watlow.fr
Website: www.watlow.com
Watlow GmbH
Postfach 11 65, Lauchwasenstr. 1
D-76709 Kronau
Germany
Tel: +49 (0) 7253 9400-0
Fax: +49 (0) 7253 9400-900
Email: germany@watlow.de
Website: www.watlow.com

Asia and Pacific
Watlow Singapore Pte Ltd.
20 Kian Teck Lane, 4th Floor
Singapore 627654
Tel: +65 6773 9488
Fax: +65 6778 0323
Email: info@watlow.com.sg
Website: www.watlow.com

Watlow Japan Ltd.
Shikoku Building Annex 9th Floor
1-14-4 Uchikanda, Chiyoda-ku
Tokyo 101-0047
Japan
Tel: +81-3-3518-6630
Fax: +81-3-3518-6632
Email: infoj@watlow.com
Website: www.watlow.co.jp

Watlow Korea Co., Ltd.
#2208, Hyundia KIC Building B, 70 Doosan-ro
Geumcheon-gu, Seoul
Republic of Korea
Tel: +82 (2) 2169-2600
Fax: +82 (2) 2169-2601
Website: www.watlow.co.kr

Watlow Electric Taiwan Corporation
10F-1 No.189 Chi-Shen 2nd Road Kaohsiung 80143
Taiwan
Tel: +886-7-2885168
Fax: +886-7-2885668
Email: nyeh@watlow.com
Website: www.watlow.com

From outside The United Kingdom:
Tel: +44 (0) 115 964 0777
Fax: +44 (0) 115 964 0071