Series 96

Calibration Manual

1/16 DIN Temperature Controller
with Custom Toolbar (patent pending)

Watlow Controls
1241 Bundy Blvd., P.O. Box 5580, Winona, Minnesota USA 55987-5580
Phone: (507) 454-5300, Fax: (507) 452-4507 http://www.watlow.com
Table of Contents

Calibrating the Series 96 ...3
Thermocouple Input Procedure ...4
Voltage Process Input Procedure ...5
Current Process Input Procedure ...5
Process Output Procedures ..6
Calibration Parameters ...8
Ordering Information ...11
How to Reach Us ..Back Cover
Warranty, Returns ..Back Cover

Technical Assistance

If you encounter a problem with your Watlow controller, see the Troubleshooting Table in the Appendix of the Series 96 User’s Manual and review all of your configuration information to verify that your selections are consistent with your application: inputs; outputs; alarms; limits; etc. If the problem persists after checking the above, you can get technical assistance from your local Watlow representative, or by dialing (507) 454-5300, ext. 1111.

An applications engineer will discuss your application with you. Please have the following information available when calling:

- Complete model number
- User’s Manual
- All configuration information
- Diagnostic menu readings

Your Feedback

Your comments or suggestions on this manual are welcome. Please send them to Technical Writer, Watlow Controls, 1241 Bundy Blvd., P.O. Box 5580, Winona, MN 55987-5580; phone: (507) 454-5300; fax: (507) 452-4507. The Series 96 Calibration Manual is copyrighted by Watlow Winona, Inc., © January 1999, with all rights reserved. (1627)
Calibrating the Series 96

Warm up the unit (20 minutes). To enter a calibration menu, enter the Factory Page by holding down the Fcty keys for six seconds. Once in the Factory Page (Fcty) use the Up-arrow c in l or Down-arrow c in m Key to select a menu. The last three menus on the Factory Page are Calibration 1 Menu (cin1), Calibration 2 Menu (cin2) and Process Output Calibration Menu (cout).

You can restore the original factory calibration with Restore Factory Calibration (rSt) (Calibration 1 Menu) or revert to the default parameter range selections with Default Settings (dFlt) (Calibration 1 Menu).

Figure 3 – The Calibration Menus.
Thermocouple Input Procedure

Equipment
- Type J reference compensator with reference junction at 32°F/0°C, or type J thermocouple calibrator to 32°F/0°C.
- Precision millivolt source, 0 to 50mV minimum range, 0.002mV resolution.

Input 1 Setup and Calibration
1. Connect the correct power supply to terminals 8 and 9 (see Series 96 User’s Manual).
2. Connect the millivolt source to terminals 6 (-) and 7 (+) with copper wire.
3. Enter 50.000mV from the millivolt source. Allow at least 10 seconds to stabilize. Set Thermocouple Calibration, 50mV [tc50] (Calibration 1 Menu) to [YES]. Press the Advance Key to store 50.000mV input and move to the next prompt.
4. Enter 0.000mV from the millivolt source. Allow at least 10 seconds to stabilize. Set Thermocouple Calibration, 0mV [tc00] (Calibration 1 Menu) to [YES]. Press the Advance Key to store 0.000mV input and move to the next prompt.
5. Disconnect the millivolt source and connect the reference compensator or thermocouple calibrator to terminals 6 (-) and 7 (+). With type J thermocouple wire, if using a compensator, turn it on and short the input wires. When using a type J calibrator, set it to simulate 32°F/0°C. Allow 10 seconds for the controller to stabilize. Set Thermocouple Calibration, 32° [tc32] (Calibration 1 Menu) to [YES]. Press the Advance Key to store type J thermocouple calibration and move to the next prompt.
6. Rewire for operation and verify calibration.

RTD Input Procedure

Equipment Required
- 1kΩ decade box with 0.01Ω resolution.

Input 1 Setup and Calibration
1. Connect the correct power supply to terminals 8 and 9 (see Series 96 User’s Manual).
2. Short terminals 5, 6 and 7 together with less than 0.1Ω. Set Ground [gnd] (Calibration 1 Menu) to [YES]. Press the Advance Key to store ground input and move to the next prompt.
3. Short terminals 5 and 7 together with less than 0.5Ω. Set Lead Resistance Calibration [LEAd] (Calibration 1 Menu) to [YES]. Press the Advance Key to store the lead resistance and move to the next prompt.
4. Connect the decade box to terminals 5 (S2), 6 (S3) and 7 (S1), with 20- to 24-gauge wire.
5. Enter 15.00Ω from the decade box. Allow at least 10 seconds to stabilize. Set RTD Calibration, 15Ω [r15] (Calibration 1 Menu) to [YES]. Press the Advance Key to store the 15.00Ω input and move to the next prompt.
6. Enter 380.00Ω from the decade box. Allow at least 10 seconds to stabilize. Set RTD Calibration, 380Ω [r380] (Calibration 1 Menu) to [YES]. Press the Advance Key to store the 380.00Ω input and move to the next prompt.
7. Rewire for operation and verify calibration.
Voltage Process Input Procedure

Equipment
- Precision voltage source, 0 to 10V minimum range, with 0.001V resolution.

Input 1 and 2 Setup and Calibration
1. Connect the correct power supply to terminals 8 and 9 (see Series 96 User’s Manual).

Input 1
2. Connect the voltage source to terminals 4 (+) and 6 (-) of the controller.
3. Enter 0.00V from the voltage source to the controller. Allow at least 10 seconds to stabilize. Set Process Calibration 1, 0V \([0\text{V}]\) (Calibration 1 Menu) to \([\text{YES}]\). Press the Advance Key \(\bigtriangleup\) to store the 0.00V input and move to the next prompt.
4. Enter 10.00V from the voltage source to the controller. Allow at least 10 seconds to stabilize. Set Process Calibration 1, 10V \([10\text{V}]\) (Calibration 1 Menu) to \([\text{YES}]\). Press the Advance Key \(\bigtriangleup\) to store the 10.00V input and move to the next prompt.

Input 2
5. Connect the voltage source to terminals 1 (-) and 3 (+) of the controller.
6. Enter 0.00V from the voltage source to the controller. Allow at least 10 seconds to stabilize. Set Process Calibration 2, 0V \([0\text{V}]\) (Calibration 2 Menu) to \([\text{YES}]\). Press the Advance Key \(\bigtriangleup\) to store the 0.00V input and move to the next prompt.
7. Enter 10.00V from the voltage source to the controller. Allow at least 10 seconds to stabilize. Set Process Calibration 2, 10V \([10\text{V}]\) (Calibration 2 Menu) to \([\text{YES}]\). Press the Advance Key \(\bigtriangleup\) to store the 10.00V input and move to the next prompt.
8. Rewire for operation and verify calibration.

Current Process Input Procedure

Equipment
- Precision current source, 0 to 20mA range, with 0.01mA resolution.

Input 1 and 2 Setup and Calibration
1. Connect the correct power supply to terminals 8 and 9 (see Series 96 User’s Manual).

Input 1
2. Connect the current source to terminals 5 (+) and 6 (-).
3. Enter 4.00mA from the current source to the controller. Allow at least 10 seconds to stabilize. Set Process Calibration 1, 4mA \([4\text{mA}]\) (Calibration 1 Menu) to \([\text{YES}]\). Press the Advance Key \(\bigtriangleup\) to store the 4mA input and move to the next prompt.
4. Enter 20.00mA from the current source to the controller. Allow at least 10 seconds to stabilize. Set Process Calibration 1, 20mA \([20\text{mA}]\) (Calibration 1 Menu) to \([\text{YES}]\). Press the Advance Key \(\bigtriangleup\) to store the 20mA input and move to the next prompt.

Input 2
5. Connect the current source to terminals 1 (-) and 2 (+).
6. Enter 4.00mA from the current source to the controller. Allow at least 10 seconds to stabilize. Set Process Calibration 2, 4mA \([4\text{mA}]\) (Calibration 2 Menu) to \([\text{YES}]\). Press the Advance Key \(\bigtriangleup\) to store the 4mA input and move to the next prompt.
7. Enter 20.00mA from the current source to the controller. Allow at least 10 seconds to stabilize. Set Process Calibration 2, 20mA \([20\text{mA}]\) (Calibration 2 Menu) to \([\text{YES}]\). Press the Advance Key \(\bigtriangleup\) to store the 20mA input and move to the next prompt.
8. Rewire for operation and verify calibration.
Process Output Procedures

Equipment
• Precision volt/ammeter with 3.5-digit resolution.

Output 1 Setup and Calibration
1. Connect the correct power supply to terminals 8 and 9 (see Series 96 User’s Manual).

Milliamperes
2. Connect the volt/ammeter (set to milliamperes) to terminals 13 (+) and 14 (-).
3. At Output Calibration 1, 4mA [1``4] (Process Output Calibration Menu) enter the reading from the ammeter. The unit should stabilize within one second. Repeat until the ammeter reads 4.00mA, ±0.1mA. Press the Advance Key to store the value and move to the next prompt.
4. At Output Calibration 1, 20mA [1`20] (Process Output Calibration Menu) enter the reading from the ammeter. The unit should stabilize within one second. Repeat until the ammeter reads 20.00mA, ±0.1mA. Press the Advance Key to store the value and move to the next prompt.

Volts
5. Connect the volt/ammeter (set to volts) to terminals 14 (-) and 15 (+).
6. At Output Calibration 1, 1V [1``1] (Process Output Calibration Menu) enter the reading from the voltmeter. The unit should stabilize within one second. Repeat until the voltmeter reads 1.00V, ±0.1V. Press the Advance Key to store the value and move to the next prompt.
7. At Output Calibration 1, 10V [1`10] (Process Output Calibration Menu) enter the reading from the voltmeter. The unit should stabilize within one second. Repeat until the voltmeter reads 10.00V, ±0.1V. Press the Advance Key to store the value and move to the next prompt.

8. Rewire for operation and verify calibration.

Output 2 Setup and Calibration
1. Connect the correct power supply to terminals 8 and 9 (see Series 96 User’s Manual).

Milliamperes
2. Connect the volt/ammeter (set to milliamperes) to terminals 17 (-) and 18 (+).
3. At Output Calibration 2, 4mA [2``4] (Process Output Calibration Menu) enter the reading from the ammeter. The unit should stabilize within one second. Repeat until the ammeter reads 4.00mA, ±0.1mA. Press the Advance Key to store the value and move to the next prompt.
4. At Output Calibration 2, 20mA [2`20] (Process Output Calibration Menu) enter the reading from the ammeter. The unit should stabilize within one second. Repeat until the ammeter reads 20.00mA, ±0.1mA. Press the Advance Key to store the value and move to the next prompt.

Volts
5. Connect the volt/ammeter (set to volts) to terminals 16 (+) and 17 (-).
6. At Output Calibration 2, 1V [2``1] (Process Output Calibration Menu) enter the reading from the voltmeter. The unit should stabilize within one second. Repeat until the voltmeter reads 1.00V, ±0.1V. Press the Advance Key to store the value and move to the next prompt.
7. At Output Calibration 2, 10V [2`10] (Process Output Calibration Menu) enter the reading from the voltmeter. The unit should stabilize within one second. Repeat until the voltmeter reads 10.00V, ±0.1V. Press the Advance Key to store the value and move to the next prompt.
Output 4 Setup and Calibration

1. Connect the correct power supply to terminals 8 and 9 (see Series 96 User’s Manual).

Milliamperes

2. Connect the volt/ammeter (set to milliamperes) to terminals 20 (-) and 21 (+).

3. At Output Calibration 4, 4mA [4] (Process Output Calibration Menu) enter the reading from the ammeter. The unit should stabilize within one second. Repeat until the ammeter reads 4.00mA, ±0.1mA. Press the Advance Key [4] to store the value and move to the next prompt.

4. At Output Calibration 4, 20mA [20] (Process Output Calibration Menu) enter the reading from the ammeter. The unit should stabilize within one second. Repeat until the ammeter reads 20.00mA, ±0.1mA. Press the Advance Key [20] to store the value and move to the next prompt.

Volts

5. Connect the volt/ammeter (set to volts) to terminals 19 (+) and 20 (-).

6. At Output Calibration 4, 1V [1] (Process Output Calibration Menu) enter the reading from the voltmeter. The unit should stabilize within one second. Repeat until the voltmeter reads 1.00V, ±0.1V. Press the Advance Key [1] to store the value and move to the next prompt.

7. At Output Calibration 4, 10V [10] (Process Output Calibration Menu) enter the reading from the voltmeter. The unit should stabilize within one second. Repeat until the voltmeter reads 10.00V, ±0.1V. Press the Advance Key [10] to store the value and move to the next prompt.

8. Rewire for operation and verify calibration.
The resting-state display shows one of the following sets of data, depending on controller setup. The first prompt appears in the top display, the second in the bottom.

To enter the calibration mode, first enter the diagnostics mode; send value 1789 to register 1512. Once in Diagnostics mode, to enter calibration mode, send 1415 to register 1600.

To restore factory calibration settings, send value 1 to register 1601.

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
<th>Range (Modbus Value)</th>
<th>Default</th>
<th>Modbus Address Read/Write</th>
<th>Conditions for Parameters to Appear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fcty</td>
<td>Calibration 1 Menu</td>
<td>To exit: 0 to 1414 and 1416 to 9999 To enter: 1415</td>
<td>0</td>
<td>1600 r/w</td>
<td>Active if the controller is in diagnostic mode for comms.</td>
</tr>
<tr>
<td></td>
<td>Restore Factory Calibration</td>
<td>no (0)</td>
<td>yes (1)</td>
<td>1601 w</td>
<td>Active if Calibration Lock (Lockout Menu) is not set to hidE.</td>
</tr>
<tr>
<td></td>
<td>Default Settings</td>
<td>no (0)</td>
<td>yes (800)</td>
<td>1602 w</td>
<td>Active if Calibration Lock (Lockout Menu) is not set to hidE.</td>
</tr>
<tr>
<td></td>
<td>Thermocouple Calibration, 0mV</td>
<td>no (0)</td>
<td>yes (1)</td>
<td>1603 w</td>
<td>Active if Calibration Lock (Lockout Menu) is not set to hidE.</td>
</tr>
<tr>
<td></td>
<td>Thermocouple Calibration, 50mV</td>
<td>no (0)</td>
<td>yes (2)</td>
<td>1603 w</td>
<td>Active if Calibration Lock (Lockout Menu) is not set to hidE.</td>
</tr>
<tr>
<td></td>
<td>Thermocouple Calibration, 32º</td>
<td>no (0)</td>
<td>yes (3)</td>
<td>1603 w</td>
<td>Active if Calibration Lock (Lockout Menu) is not set to hidE.</td>
</tr>
<tr>
<td></td>
<td>Set Ground</td>
<td>no (0)</td>
<td>yes (4)</td>
<td>1603 w</td>
<td>Active if Calibration Lock (Lockout Menu) is not set to hidE.</td>
</tr>
<tr>
<td></td>
<td>Lead Resistance Calibration</td>
<td>no (0)</td>
<td>yes (5)</td>
<td>1603 w</td>
<td>Active if Calibration Lock (Lockout Menu) is not set to hidE.</td>
</tr>
<tr>
<td></td>
<td>RTD Calibration, 15Ω</td>
<td>no (0)</td>
<td>yes (6)</td>
<td>1603 w</td>
<td>Active if Calibration Lock (Lockout Menu) is not set to hidE.</td>
</tr>
<tr>
<td>Display</td>
<td>Parameter</td>
<td>Range (Modbus Value)</td>
<td>Default</td>
<td>Modbus Address</td>
<td>Conditions for Parameters to Appear</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------</td>
<td>----------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>r 380</td>
<td>RTD Calibration, 380Ω</td>
<td>no (0)</td>
<td>no (0)</td>
<td>1603 w</td>
<td>Active if Calibration Lock (Lockout Menu) is not set to h.dE.</td>
</tr>
<tr>
<td></td>
<td>Store 380.000Ω calibration for input 1 RTD.</td>
<td>yes (7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>804u</td>
<td>Process Calibration 1, 0V</td>
<td>no (0)</td>
<td>no (0)</td>
<td>1603 w</td>
<td>Active if Calibration Lock (Lockout Menu) is not set to h.dE.</td>
</tr>
<tr>
<td></td>
<td>Store 0.000V calibration for input 1 process.</td>
<td>yes (8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8104u</td>
<td>Process Calibration 1, 10V</td>
<td>no (0)</td>
<td>no (0)</td>
<td>1603 w</td>
<td>Active if Calibration Lock (Lockout Menu) is not set to h.dE.</td>
</tr>
<tr>
<td></td>
<td>Store 10.000V calibration for input 1 process.</td>
<td>yes (9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>844u</td>
<td>Process Calibration 1, 4mA</td>
<td>no (0)</td>
<td>no (0)</td>
<td>1603 w</td>
<td>Active if Calibration Lock (Lockout Menu) is not set to h.dE.</td>
</tr>
<tr>
<td></td>
<td>Store 4.000mA calibration for input 1 process.</td>
<td>yes (10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8204u</td>
<td>Process Calibration 1, 20mA</td>
<td>no (0)</td>
<td>no (0)</td>
<td>1603 w</td>
<td>Active if Calibration Lock (Lockout Menu) is not set to h.dE.</td>
</tr>
<tr>
<td></td>
<td>Store 20.000mA calibration for input 1 process.</td>
<td>yes (11)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These parameters are not available if the ramping software option has been ordered (96 _ _ _ _ _ _ _ AA _ _)
<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
<th>Range (Modbus Value)</th>
<th>Default</th>
<th>Modbus Address Read/Write</th>
<th>Conditions for Parameters to Appear</th>
</tr>
</thead>
<tbody>
<tr>
<td>cout</td>
<td>Process Output Calibration Menu</td>
<td>0.00 to 99.99</td>
<td>4.00 (400)</td>
<td>1604 w</td>
<td>Active if output 1 is process (96 _-F _ _ _ _ _ _) and Calibration Lock (Lockout Menu) is not set to h</td>
</tr>
<tr>
<td>Fcty</td>
<td>Factory Page</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 4</td>
<td>Output Calibration 1, 4mA</td>
<td>0.00 to 99.99</td>
<td>20.00 (2000)</td>
<td>1605 w</td>
<td>Active if output 1 is process (96 _-F _ _ _ _ _ _) and Calibration Lock (Lockout Menu) is not set to h</td>
</tr>
<tr>
<td>1 20</td>
<td>Output Calibration 1, 20mA</td>
<td>0.00 to 99.99</td>
<td>10.00 (1000)</td>
<td>1607 w</td>
<td>Active if output 1 is process (96 _-F _ _ _ _ _ _) and Calibration Lock (Lockout Menu) is not set to h</td>
</tr>
<tr>
<td>1 1</td>
<td>Output Calibration 1, 1V</td>
<td>0.00 to 99.99</td>
<td>1.00 (100)</td>
<td>1606 w</td>
<td>Active if output 1 is process (96 _-F _ _ _ _ _ _) and Calibration Lock (Lockout Menu) is not set to h</td>
</tr>
<tr>
<td>1 10</td>
<td>Output Calibration 1, 10V</td>
<td>0.00 to 99.99</td>
<td>20.00 (2000)</td>
<td>1610 w</td>
<td>Active if output 2 is process (96 _-F _ _ _ _ _ _) and Calibration Lock (Lockout Menu) is not set to h</td>
</tr>
<tr>
<td>2 4</td>
<td>Output Calibration 2, 4mA</td>
<td>0.00 to 99.99</td>
<td>4.00 (400)</td>
<td>1609 w</td>
<td>Active if output 2 is process (96 _-F _ _ _ _ _ _) and Calibration Lock (Lockout Menu) is not set to h</td>
</tr>
<tr>
<td>2 20</td>
<td>Output Calibration 2, 20mA</td>
<td>0.00 to 99.99</td>
<td>10.00 (1000)</td>
<td>1611 w</td>
<td>Active if output 2 is process (96 _-F _ _ _ _ _ _) and Calibration Lock (Lockout Menu) is not set to h</td>
</tr>
<tr>
<td>2 1</td>
<td>Output Calibration 2, 1V</td>
<td>0.00 to 99.99</td>
<td>1.00 (100)</td>
<td>1611 w</td>
<td>Active if output 2 is process (96 _-F _ _ _ _ _ _) and Calibration Lock (Lockout Menu) is not set to h</td>
</tr>
<tr>
<td>2 10</td>
<td>Output Calibration 2, 10V</td>
<td>0.00 to 99.99</td>
<td>1.00 (100)</td>
<td>1612 w</td>
<td>Active if output 2 is process (96 _-F _ _ _ _ _ _) and Calibration Lock (Lockout Menu) is not set to h</td>
</tr>
<tr>
<td>4 4</td>
<td>Output Calibration 4, 4mA</td>
<td>0.00 to 99.99</td>
<td>4.00 (400)</td>
<td>1619 w</td>
<td>Active if output 4 is process (96 _-M _ _ _ _ _) and Calibration Lock (Lockout Menu) is not set to h</td>
</tr>
</tbody>
</table>
Ordering Information

Ser_{ies 96}

Microprocessor-based
1/16 DIN with universal input 1.
Options include software, power supply, input 2, four outputs and display color

Power Supply

A = 100-240V_{ac/dc}
B = 24-28V_{ac/dc}

Input 2

0 = None
1 = Event input & 0-5V_{dc} / 4-20mA (remote set point input)

Output 1

C = Switched dc/open collector
D = Electromechanical relay, Form C, 2A, without RC suppression
F = Universal Process, range selectable: 0-20mA, 4-20mA, 0-5V_{dc}, 1-5V_{dc}, 0-10V_{dc}
K = 0.5A solid-state relay without RC suppression

Output 2

A = None
C = Switched dc output/open collector
D = Electromechanical relay, Form C, 2A, without RC suppression
F = Universal Process, range selectable: 0-20mA, 4-20mA, 0-5V_{dc}, 1-5V_{dc}, 0-10V_{dc}
K = 0.5A solid-state relay without RC suppression

Output 3

A = None
D = Electromechanical relay, Form C, 2A, without RC suppression

Output 4

A = None
D = Electromechanical relay, Form C, 2A, without RC suppression
R = 232 Communications
U = 485 Communications
M = Universal Retransmit, range selectable: 0-20mA, 4-20mA, 0-5V_{dc}, 1-5V_{dc}, 0-10V_{dc}

Software/Preset Parameters

00 = Standard software
AA = Ramping

Display/Overlay

Upper/Lower
RR = Red/Red display GR = Green/Red display
RG = Red/Green display GG = Green/Green display
How to Reach Us

Contact
- Phone: (507) 454-5300.
- Fax: (507) 452-4507.
- For technical support, ask for an Applications Engineer (ext. 1111).
- To place an order, ask for Customer Service.
- To discuss a custom option, ask for a Series 96 Product Manager.

Warranty
The Watlow Series 96 is warranted to be free of defects in material and workmanship for 36 months after delivery to the first purchaser for use, providing that the units have not been misapplied. Since Watlow has no control over their use, and sometimes misuse, we cannot guarantee against failure. Watlow's obligations hereunder, at Watlow's option, are limited to replacement, repair or refund of purchase price, and parts which upon examination prove to be defective within the warranty period specified. This warranty does not apply to damage resulting from transportation, alteration, misuse, or abuse.

Returns
- Call or fax Customer Service for a Return Material Authorization (RMA) number before returning a controller.
- Put the RMA number on the shipping label, and also on a written description of the problem.
- A restocking charge of 20% of the net price is charged for all standard units returned to stock.